TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141209 times)
  2. FAT32 Library (73995 times)
  3. Network Ethernet Library (58641 times)
  4. USB Device Library (48764 times)
  5. Network WiFi Library (44458 times)
  6. FT800 Library (44033 times)
  7. GSM click (30784 times)
  8. mikroSDK (29513 times)
  9. PID Library (27339 times)
  10. microSD click (27188 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Expand 10 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Port expander

Downloaded: 297 times

Not followed.

License: MIT license  

Expand 10 Click is a compact add-on board that contains a multi-port I/O expander. This board features the PCAL6524, a 24-bit general-purpose I/O expander providing remote I/O expansion for most MCU’s families via the Fast-mode Plus I2C-serial interface from NXP Semiconductors.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Expand 10 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Expand 10 Click" changes.

Do you want to report abuse regarding "Expand 10 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Expand 10 Click

Expand 10 Click is a compact add-on board that contains a multi-port I/O expander. This board features the PCAL6524, a 24-bit general-purpose I/O expander providing remote I/O expansion for most MCU’s families via the Fast-mode Plus I2C-serial interface from NXP Semiconductors.

expand10_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Aug 2021.
  • Type : I2C type

Software Support

We provide a library for the Expand10 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Expand10 Click driver.

Standard key functions :

  • expand10_cfg_setup Config Object Initialization function.

    void expand10_cfg_setup ( expand10_cfg_t *cfg );
  • expand10_init Initialization function.

    err_t expand10_init ( expand10_t *ctx, expand10_cfg_t *cfg );
  • expand10_default_cfg Click Default Configuration function.

    err_t expand10_default_cfg ( expand10_t *ctx );

Example key functions :

  • expand10_set_pin_direction This function sets the direction of the selected pins.

    err_t expand10_set_pin_direction ( expand10_t *ctx, uint8_t direction, uint8_t port, uint8_t pin_mask );
  • expand10_set_pin_value This function sets the value of the selected pins.

    err_t expand10_set_pin_value ( expand10_t *ctx, uint8_t port, uint8_t clr_mask, uint8_t set_mask );
  • expand10_read_port_value This function reads the value of the selected port input pins.

    err_t expand10_read_port_value ( expand10_t *ctx, uint8_t port, uint8_t *data_out );

Example Description

This example demonstrates the use of Expand 10 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration which sets the first two ports as output and the third port as input with pull-down enabled.


void application_init ( void )
{
    log_cfg_t log_cfg;            /**< Logger config object. */
    expand10_cfg_t expand10_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    expand10_cfg_setup( &expand10_cfg );
    EXPAND10_MAP_MIKROBUS( expand10_cfg, MIKROBUS_1 );
    err_t init_flag = expand10_init( &expand10, &expand10_cfg );
    if ( I2C_MASTER_ERROR == init_flag ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    }

    init_flag = expand10_default_cfg ( &expand10 );
    if ( EXPAND10_ERROR == init_flag ) 
    {
        log_error( &logger, " Default Config Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Sets the pins of the first two ports and then reads and displays the status of all ports on the USB UART approximately once per second.


void application_task ( void )
{
    uint8_t port_value = 0;

    for ( uint16_t pin_num = EXPAND10_PIN_0_MASK; pin_num <= EXPAND10_PIN_7_MASK; pin_num <<= 1 )
    {
        expand10_set_all_pins_value( &expand10, pin_num );

        expand10_read_port_value( &expand10, EXPAND10_PORT_0, &port_value );
        log_printf( &logger, " Status P0 (output): 0x%.2X\r\n", ( uint16_t ) port_value );

        expand10_read_port_value( &expand10, EXPAND10_PORT_1, &port_value );
        log_printf( &logger, " Status P1 (output): 0x%.2X\r\n", ( uint16_t ) port_value );

        expand10_read_port_value( &expand10, EXPAND10_PORT_2, &port_value );
        log_printf( &logger, " Status P2 (input) : 0x%.2X\r\n\r\n", ( uint16_t ) port_value );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Expand10

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

USB-C Sink 2 Click

0

USB-C Sink 2 Click is a compact add-on board with a standalone autonomous USB power delivery controller. This board features the AP33772, a high-performance USB PD sink controller from Diodes Incorporated. It supports dead battery mode to allow a system to be powered from an external source directly, establishes a valid source-to-sink connection, and negotiates a USB power delivery (PD) contract with a PD-capable source device. It also supports a flexible PD3.0 and PPS for applications that require direct voltage and current requests, with fine-tuning capabilities.

[Learn More]

Dual EE Click

0

Dual EE Click contains two AT24CM02 EEPROM ICs onboard which gives total of 4MB of memory. Each memory IC can be addressed through the I2C interface with the transfer speed of 400KHz.

[Learn More]

Charger Click

0

Charger Click is a compact add-on board providing a standalone battery charger and monitor. This board features Microchip's MCP73831, a miniature single-cell, fully integrated Li-Ion, Li-Polymer charge management controller. The charge voltage of the MCP73831 is set to 4.20V, and a charge current to 250mA with an external resistor. In addition, this Click board™ features the DS2438, a smart battery monitor that monitors the total amount of current going into and out of the battery.

[Learn More]