TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (401 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (128 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140762 times)
  2. FAT32 Library (73349 times)
  3. Network Ethernet Library (58195 times)
  4. USB Device Library (48380 times)
  5. Network WiFi Library (43975 times)
  6. FT800 Library (43533 times)
  7. GSM click (30466 times)
  8. mikroSDK (29170 times)
  9. PID Library (27166 times)
  10. microSD click (26847 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Silent Step 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.5

mikroSDK Library: 2.0.0.0

Category: Stepper

Downloaded: 90 times

Not followed.

License: MIT license  

Silent Step 4 Click is a compact add-on board representing a completely integrated step motor driver solution. This board features the TMC2240, a smart integrated stepper driver from Analog Devices. The driver is based on a 256 micro-steps built-in indexer, two fully integrated H-Bridges, and non-dissipative integrated current sensing (ICS). The two H-Bridges can drive motors of up to 36V and 3A at max.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Silent Step 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Silent Step 4 Click" changes.

Do you want to report abuse regarding "Silent Step 4 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Silent Step 4 Click

Silent Step 4 Click is a compact add-on board representing a completely integrated step motor driver solution. This board features the TMC2240, a smart integrated stepper driver from Analog Devices. The driver is based on a 256 micro-steps built-in indexer, two fully integrated H-Bridges, and non-dissipative integrated current sensing (ICS). The two H-Bridges can drive motors of up to 36V and 3A at max.

silentstep4_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Oct 2023.
  • Type : I2C/SPI type

Software Support

We provide a library for the Silent Step 4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Silent Step 4 Click driver.

Standard key functions :

  • silentstep4_cfg_setup Config Object Initialization function.

    void silentstep4_cfg_setup ( silentstep4_cfg_t *cfg );
  • silentstep4_init Initialization function.

    err_t silentstep4_init ( silentstep4_t *ctx, silentstep4_cfg_t *cfg );
  • silentstep4_default_cfg Click Default Configuration function.

    err_t silentstep4_default_cfg ( silentstep4_t *ctx );

Example key functions :

  • silentstep4_set_direction This function sets the motor direction by setting the DIR pin logic state.

    void silentstep4_set_direction ( silentstep4_t *ctx, uint8_t dir );
  • silentstep4_set_step_res This function sets the microstep resolution bits in CHOPCONF register.

    err_t silentstep4_set_step_res ( silentstep4_t *ctx, uint8_t mres );
  • silentstep4_drive_motor This function drives the motor for the specific number of steps at the selected speed.

    void silentstep4_drive_motor ( silentstep4_t *ctx, uint32_t steps, uint8_t speed );

Example Description

This example demonstrates the use of the Silent Step 4 Click board by driving the motor in both directions for a desired number of steps.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    silentstep4_cfg_t silentstep4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    silentstep4_cfg_setup( &silentstep4_cfg );
    SILENTSTEP4_MAP_MIKROBUS( silentstep4_cfg, MIKROBUS_1 );
    err_t init_flag = silentstep4_init( &silentstep4, &silentstep4_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( SILENTSTEP4_ERROR == silentstep4_default_cfg ( &silentstep4 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Drives the motor clockwise for 200 full steps and then counter-clockiwse for 200 half steps and 400 quarter steps with 2 seconds delay on driving mode change. All data is being logged on the USB UART where you can track the program flow.

void application_task ( void )
{
    log_printf ( &logger, " Move 200 full steps clockwise, speed: slow\r\n\n" );
    silentstep4_set_direction ( &silentstep4, SILENTSTEP4_DIR_CW );
    silentstep4_set_step_res ( &silentstep4, SILENTSTEP4_MRES_FULLSTEP );
    silentstep4_drive_motor ( &silentstep4, 200, SILENTSTEP4_SPEED_SLOW );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf ( &logger, " Move 200 half steps counter-clockwise, speed: medium\r\n\n" );
    silentstep4_set_direction ( &silentstep4, SILENTSTEP4_DIR_CCW );
    silentstep4_set_step_res ( &silentstep4, SILENTSTEP4_MRES_2 );
    silentstep4_drive_motor ( &silentstep4, 200, SILENTSTEP4_SPEED_MEDIUM );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf ( &logger, " Move 400 quarter steps counter-clockwise, speed: fast\r\n\n" );
    silentstep4_set_direction ( &silentstep4, SILENTSTEP4_DIR_CCW );
    silentstep4_set_step_res ( &silentstep4, SILENTSTEP4_MRES_4 );
    silentstep4_drive_motor ( &silentstep4, 400, SILENTSTEP4_SPEED_FAST );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.SilentStep4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

RGB Ring Click

0

RGB Ring Click is a compact add-on board designed for dynamic and colorful lighting applications. This board features eight RGB LEDs (WL-ICLED 1312020030000) from Würth Elektronik, incorporating integrated circuits to control color mixing precisely. This board supports individual control of each LED's red, green, and blue components with single-wire communication enabling daisy-chaining. It also features the innovative Click Snap function, allowing the main LED area to be detached for flexible use, and includes a button for interactive functionality.

[Learn More]

Flash 4 Click

0

Flash 4 Click is a perfect solution for the mass storage option in various embedded applications. With fast performance being one of its key features, Flash 4 Click can also be used for the code shadowing, execute-in-place (XIP), and data storage.

[Learn More]

USB-C Sink 2 Click

0

USB-C Sink 2 Click is a compact add-on board with a standalone autonomous USB power delivery controller. This board features the AP33772, a high-performance USB PD sink controller from Diodes Incorporated. It supports dead battery mode to allow a system to be powered from an external source directly, establishes a valid source-to-sink connection, and negotiates a USB power delivery (PD) contract with a PD-capable source device. It also supports a flexible PD3.0 and PPS for applications that require direct voltage and current requests, with fine-tuning capabilities.

[Learn More]