TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141237 times)
  2. FAT32 Library (74038 times)
  3. Network Ethernet Library (58662 times)
  4. USB Device Library (48767 times)
  5. Network WiFi Library (44489 times)
  6. FT800 Library (44034 times)
  7. GSM click (30784 times)
  8. mikroSDK (29607 times)
  9. PID Library (27342 times)
  10. microSD click (27223 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Relay 7 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.3

mikroSDK Library: 2.0.0.0

Category: Relay

Downloaded: 82 times

Not followed.

License: MIT license  

Relay 7 Click is a compact add-on board for precise load control and monitoring applications. This board features four CRR05-1As, a CRR series reed relay from Standex Electronics, well-known for its ultra-miniature SMD design and high insulation resistance. These four relays each have four load connection terminals and orange LED indicators that signal the operational status, ensuring clear and immediate feedback. These relays are highly reliable and come in a rugged thermoset over-molded package with ceramic substrate and a typical 1013Ω insulation resistance. They support a coil voltage of 5VDC and switching capabilities up to 170VDC/0.5A/10W. It is ideally suited for test and measurement (ATE) equipment, instrumentation, and telecommunications.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Relay 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Relay 7 Click" changes.

Do you want to report abuse regarding "Relay 7 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Relay 7 Click

Relay 7 Click is a compact add-on board for precise load control and monitoring applications. This board features four CRR05-1As, a CRR series reed relay from Standex Electronics, well-known for its ultra-miniature SMD design and high insulation resistance. These four relays each have four load connection terminals and orange LED indicators that signal the operational status, ensuring clear and immediate feedback. These relays are highly reliable and come in a rugged thermoset over-molded package with ceramic substrate and a typical 1013Ω insulation resistance. They support a coil voltage of 5VDC and switching capabilities up to 170VDC/0.5A/10W. It is ideally suited for test and measurement (ATE) equipment, instrumentation, and telecommunications.

relay7_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Nov 2023.
  • Type : I2C type

Software Support

We provide a library for the Relay 7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Relay 7 Click driver.

Standard key functions :

  • relay7_cfg_setup Config Object Initialization function.

    void relay7_cfg_setup ( relay7_cfg_t *cfg );
  • relay7_init Initialization function.

    err_t relay7_init ( relay7_t *ctx, relay7_cfg_t *cfg );
  • relay7_default_cfg Click Default Configuration function.

    err_t relay7_default_cfg ( relay7_t *ctx );

Example key functions :

  • relay7_set_relay This function sets the desired state of the selected relay.

    err_t relay7_set_relay ( relay7_t *ctx, uint8_t relay_sel, relay7_relay_state_t state );
  • relay7_reset_device This function performs a hardware reset of the device.

    void relay7_reset_device ( relay7_t *ctx );
  • relay7_get_interrupt This function returns the interrupt pin logic state.

    uint8_t relay7_get_interrupt ( relay7_t *ctx );

Example Description

This example demonstrates the use of the Relay 7 Click board by toggling the relay state.

The demo application is composed of two sections :

Application Init

Initialization of I2C module and log UART. After driver initialization, the app executes a default configuration.

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    relay7_cfg_t relay7_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    relay7_cfg_setup( &relay7_cfg );
    RELAY7_MAP_MIKROBUS( relay7_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == relay7_init( &relay7, &relay7_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( RELAY7_ERROR == relay7_default_cfg ( &relay7 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

The demo application toggles the state of all relays every 5 seconds. The results are sent to the UART terminal, where you can monitor their changes.

void application_task ( void ) 
{
    for ( uint8_t relay_sel = RELAY7_SEL_REL1; relay_sel <= RELAY7_SEL_REL4; relay_sel++ )
    {
        if ( RELAY7_OK == relay7_set_relay( &relay7, relay_sel, relay_state ) )
        {
            log_printf( &logger, " Relay %d ", ( uint16_t ) relay_sel );
            if ( RELAY7_STATE_OPEN == relay_state )
            {
                log_printf( &logger, " normally open state\r\n" );
            }
            else
            {
                log_printf( &logger, " normally close state\r\n" );
            }
        }
        Delay_ms ( 1000 );
    }
    relay_state = ~relay_state;
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Relay7

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Pressure 19 Click

0

Pressure 19 Click is a compact add-on board that contains a board-mount pressure sensor. This board features the MLX90817, a factory-calibrated absolute pressure sensor delivering ratiometric analog output from Melexis Technologies. The MLX90817 comes with a configurable host interface that supports I2C serial communication and configurable signal processing (the user is allowed to process the output signal in analog or digital form). It measures pressure from 0.2 up to 3bar with a pressure accuracy of ±33mbar. Its DSP-based architecture using a 16bit microcontroller provides outstanding performance in terms of initial accuracy and assures operation in a temperature range of -40°C to +120°C, ensuring stable operation under extreme conditions.

[Learn More]

TempHum 19 Click

0

Temp&Hum 19 Click is a compact add-on board that represents temperature and humidity sensing solution. This board features the BPS240, a highly accurate relative humidity and temperature sensor from Bourns. This sensor, characterized by its high accuracy (±2% from 20% to 80%RH (±4% over entire humidity range)) and high resolution, provides 10-bit data to the host controller with a configurable I2C interface.

[Learn More]

Gyro click

0

This example demonstrates reading from Gyro click sensor (L3GD20) angular rate and then converting data to angular displacement by integration. Data is send via UART to PC terminal application.

[Learn More]