TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139559 times)
  2. FAT32 Library (72040 times)
  3. Network Ethernet Library (57254 times)
  4. USB Device Library (47607 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42551 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26930 times)
  10. microSD click (26308 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Relay 7 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.3

mikroSDK Library: 2.0.0.0

Category: Relay

Downloaded: 37 times

Not followed.

License: MIT license  

Relay 7 Click is a compact add-on board for precise load control and monitoring applications. This board features four CRR05-1As, a CRR series reed relay from Standex Electronics, well-known for its ultra-miniature SMD design and high insulation resistance. These four relays each have four load connection terminals and orange LED indicators that signal the operational status, ensuring clear and immediate feedback. These relays are highly reliable and come in a rugged thermoset over-molded package with ceramic substrate and a typical 1013Ω insulation resistance. They support a coil voltage of 5VDC and switching capabilities up to 170VDC/0.5A/10W. It is ideally suited for test and measurement (ATE) equipment, instrumentation, and telecommunications.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Relay 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Relay 7 Click" changes.

Do you want to report abuse regarding "Relay 7 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Relay 7 Click

Relay 7 Click is a compact add-on board for precise load control and monitoring applications. This board features four CRR05-1As, a CRR series reed relay from Standex Electronics, well-known for its ultra-miniature SMD design and high insulation resistance. These four relays each have four load connection terminals and orange LED indicators that signal the operational status, ensuring clear and immediate feedback. These relays are highly reliable and come in a rugged thermoset over-molded package with ceramic substrate and a typical 1013Ω insulation resistance. They support a coil voltage of 5VDC and switching capabilities up to 170VDC/0.5A/10W. It is ideally suited for test and measurement (ATE) equipment, instrumentation, and telecommunications.

relay7_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Nov 2023.
  • Type : I2C type

Software Support

We provide a library for the Relay 7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Relay 7 Click driver.

Standard key functions :

  • relay7_cfg_setup Config Object Initialization function.

    void relay7_cfg_setup ( relay7_cfg_t *cfg );
  • relay7_init Initialization function.

    err_t relay7_init ( relay7_t *ctx, relay7_cfg_t *cfg );
  • relay7_default_cfg Click Default Configuration function.

    err_t relay7_default_cfg ( relay7_t *ctx );

Example key functions :

  • relay7_set_relay This function sets the desired state of the selected relay.

    err_t relay7_set_relay ( relay7_t *ctx, uint8_t relay_sel, relay7_relay_state_t state );
  • relay7_reset_device This function performs a hardware reset of the device.

    void relay7_reset_device ( relay7_t *ctx );
  • relay7_get_interrupt This function returns the interrupt pin logic state.

    uint8_t relay7_get_interrupt ( relay7_t *ctx );

Example Description

This example demonstrates the use of the Relay 7 Click board by toggling the relay state.

The demo application is composed of two sections :

Application Init

Initialization of I2C module and log UART. After driver initialization, the app executes a default configuration.

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    relay7_cfg_t relay7_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    relay7_cfg_setup( &relay7_cfg );
    RELAY7_MAP_MIKROBUS( relay7_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == relay7_init( &relay7, &relay7_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( RELAY7_ERROR == relay7_default_cfg ( &relay7 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

The demo application toggles the state of all relays every 5 seconds. The results are sent to the UART terminal, where you can monitor their changes.

void application_task ( void ) 
{
    for ( uint8_t relay_sel = RELAY7_SEL_REL1; relay_sel <= RELAY7_SEL_REL4; relay_sel++ )
    {
        if ( RELAY7_OK == relay7_set_relay( &relay7, relay_sel, relay_state ) )
        {
            log_printf( &logger, " Relay %d ", ( uint16_t ) relay_sel );
            if ( RELAY7_STATE_OPEN == relay_state )
            {
                log_printf( &logger, " normally open state\r\n" );
            }
            else
            {
                log_printf( &logger, " normally close state\r\n" );
            }
        }
        Delay_ms ( 1000 );
    }
    relay_state = ~relay_state;
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Relay7

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Network WiFi Library

5

The Network_WiFi library simplifies usage of the SPWF01S, MCW1001A and CC3000 wireless network module through plenty of library routines.

[Learn More]

PWR Meter Click

0

PWR Meter Click is a power measurement Click board™, capable of measuring voltage and current through the load, connected to either AC or DC power source. PWR Meter Click uses the MCP39F511A, a very sophisticated monitoring IC from Microchip, with 16-bit processing core.

[Learn More]

Pressure 23 07BA Click

0

Pressure 23 Click - 07BA is a compact add-on board for accurate and reliable absolute pressure and temperature measurements in harsh environments. This board features the MS5849-07BA, an ultra-compact, chlorine-resistant sensor from TE Connectivity that delivers 24-bit resolution data via I2C or SPI interfaces. It operates within pressure ranges of 0.4 to 7 bar, features a chlorine-resistant gel coating, and measures temperatures from -20 to +85°C. The sensor's grounded metal ring provides robust protection and secure O-ring mounting, while the flexible communication options allow for optimized performance.

[Learn More]