TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141459 times)
  2. FAT32 Library (74301 times)
  3. Network Ethernet Library (58847 times)
  4. USB Device Library (48909 times)
  5. Network WiFi Library (44679 times)
  6. FT800 Library (44215 times)
  7. GSM click (30933 times)
  8. mikroSDK (29808 times)
  9. PID Library (27403 times)
  10. microSD click (27333 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Light 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.4

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 105 times

Not followed.

License: MIT license  

Light 2 Click is a compact add-on board designed for accurate and flexible light measurement in various environments. This board features the ISL76682, a high-sensitivity, light-to-digital sensor with an I2C interface from Renesas, made specifically for automotive applications. Key features include a photodiode array that closely mimics the human eye's response, an ADC for flicker rejection, and four selectable light measurement ranges via I2C, enhancing both flexibility and accuracy. With a typical power consumption of 55µA in Standard mode and two power-down modes to minimize energy use, the board is efficient and adaptable to different lighting conditions.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Light 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Light 2 Click" changes.

Do you want to report abuse regarding "Light 2 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Light 2 Click

Light 2 Click is a compact add-on board designed for accurate and flexible light measurement in various environments. This board features the ISL76682, a high-sensitivity, light-to-digital sensor with an I2C interface from Renesas, made specifically for automotive applications. Key features include a photodiode array that closely mimics the human eye's response, an ADC for flicker rejection, and four selectable light measurement ranges via I2C, enhancing both flexibility and accuracy. With a typical power consumption of 55µA in Standard mode and two power-down modes to minimize energy use, the board is efficient and adaptable to different lighting conditions.

light2_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Nov 2023.
  • Type : I2C type

Software Support

We provide a library for the Light 2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Light 2 Click driver.

Standard key functions :

  • light2_cfg_setup Config Object Initialization function.

    void light2_cfg_setup ( light2_cfg_t *cfg );
  • light2_init Initialization function.

    err_t light2_init ( light2_t *ctx, light2_cfg_t *cfg );
  • light2_default_cfg Click Default Configuration function.

    err_t light2_default_cfg ( light2_t *ctx );

Example key functions :

  • light2_read_raw_data This function reads raw data from the ADC of Light 2 Click board.

    err_t light2_read_raw_data ( light2_t *ctx, uint16_t *data_out );
  • light2_get_cal_const This function is used to get a calculation constant depending on Light 2 Click board configuration.

    err_t light2_get_cal_const ( light2_t *ctx );
  • light2_get_light_data This function is used to read light data of Light 2 Click board configuration.

    err_t light2_get_light_data ( light2_t *ctx, float *light_data );

Example Description

This example demonstrates the use of Light 2 Click board by measuring the ambient light level in Lux.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    light2_cfg_t light2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    light2_cfg_setup( &light2_cfg );
    LIGHT2_MAP_MIKROBUS( light2_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == light2_init( &light2, &light2_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( LIGHT2_ERROR == light2_default_cfg ( &light2 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads the ADC voltage and then calculates the illuminance from it. The calculated value of illuminance in lux is being displayed on the USB UART approximately once per second.

void application_task ( void ) 
{
    float lux_data = 0;

    light2_get_light_data( &light2, &lux_data );
    log_printf( &logger, " LUX data: %.2f LUX \r\n", lux_data );

    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Light2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Analog MUX 4 Click

0

Analog MUX 4 Click is a compact add-on board that switches one of many analog inputs to one digital output. This board features the TMUX1308, a general-purpose 8:1 single-ended CMOS multiplexer (MUX) from Texas Instruments. The TMUX1308 has an internal injection current control which eliminates the need for external diode and resistor networks to protect the switch and keep the input signals within the supply voltage. It also supports bidirectional analog and digital signals ranging from 0 to 5V, alongside several protection features allowing a reliable operation and protecting the device from potential damage.

[Learn More]

Button 2 Click

0

Button 2 Click is a compact add-on board designed for simple and efficient tactile input detection. This board features the TL3215AF160BQ, a TL3215 series of tactile switches from E-Switch, featuring high reliability and precise operation. The switch has a 2mm actuator, 160gf actuation force, silver contact material, and a lifespan of 1,000,000 cycles, while the integrated blue LED provides visual feedback. The board supports the new Click Snap feature, allowing easy detachment of the sensor area for flexible use.

[Learn More]

Stepper 19 Click

0

Stepper 19 Click is a compact add-on board for precise control over stepper motors. This board features the DRV8424, a stepper motor driver from Texas Instruments designed to drive both industrial and consumer stepper motors. The DRV8424 has dual N-channel power MOSFET H-bridge drivers, a microstepping indexer, and integrated current sensing, eliminating the need for external power sense resistors. Operating on a 5V to 30V external power supply, the DRV8424 can deliver up to 2.5A of full-scale output current, with an internal PWM current regulation scheme that includes smart tune, slow, and mixed decay options to optimize performance. Ideal for applications in multichannel system monitoring, robotics, precision positioning, and automated manufacturing processes, this Click board™ appears as a versatile solution for sophisticated stepper motor control.

[Learn More]