TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141361 times)
  2. FAT32 Library (74205 times)
  3. Network Ethernet Library (58776 times)
  4. USB Device Library (48854 times)
  5. Network WiFi Library (44564 times)
  6. FT800 Library (44149 times)
  7. GSM click (30883 times)
  8. mikroSDK (29739 times)
  9. PID Library (27372 times)
  10. microSD click (27309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

ADC 24 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.4

mikroSDK Library: 2.0.0.0

Category: ADC

Downloaded: 163 times

Not followed.

License: MIT license  

ADC 24 Click is a compact add-on board for high-speed analog to digital conversion. This board features the AD7490, a 12-bit, 16-channel successive approximation ADC from Analog Devices, optimized for efficient power usage with a consumption of just 2.5mA from a 5V supply while achieving up to 1MSPS throughput rates. The board features 16 single-ended analog inputs with a configurable input range, supported by a channel sequencer for sequential channel conversion and multiple operational modes for flexible power management. This makes ADC 24 Click ideal for extensive system monitoring applications such as multichannel system monitoring, power line monitoring, data acquisition, instrumentation, and process control, serving various industrial and tech applications.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "ADC 24 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "ADC 24 Click" changes.

Do you want to report abuse regarding "ADC 24 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


ADC 24 Click

ADC 24 Click is a compact add-on board for high-speed analog to digital conversion. This board features the AD7490, a 12-bit, 16-channel successive approximation ADC from Analog Devices, optimized for efficient power usage with a consumption of just 2.5mA from a 5V supply while achieving up to 1MSPS throughput rates. The board features 16 single-ended analog inputs with a configurable input range, supported by a channel sequencer for sequential channel conversion and multiple operational modes for flexible power management. This makes ADC 24 Click ideal for extensive system monitoring applications such as multichannel system monitoring, power line monitoring, data acquisition, instrumentation, and process control, serving various industrial and tech applications.

adc24_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Dec 2023.
  • Type : SPI type

Software Support

We provide a library for the ADC 24 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for ADC 24 Click driver.

Standard key functions :

  • adc24_cfg_setup Config Object Initialization function.

    void adc24_cfg_setup ( adc24_cfg_t *cfg );
  • adc24_init Initialization function.

    err_t adc24_init ( adc24_t *ctx, adc24_cfg_t *cfg );

Example key functions :

  • adc24_get_voltage This function reads the results of 12-bit ADC raw data and converts them to proportional voltage levels by using the SPI serial interface.

    err_t adc24_get_voltage ( adc24_t *ctx, adc24_ctrl_t ctrl, uint8_t *in_pos, float *voltage );
  • adc24_get_adc_data This function reads a conversion result and selected channel by using the SPI serial interface.

    err_t adc24_get_adc_data ( adc24_t *ctx, adc24_ctrl_t ctrl, uint8_t *in_pos, uint16_t *adc_data );

Example Description

This example demonstrates the use of the ADC 24 Click board by reading and writing data by using the SPI serial interface and reading results of AD conversion.

The demo application is composed of two sections :

Application Init

Initialization of SPI module and log UART.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    adc24_cfg_t adc24_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    adc24_cfg_setup( &adc24_cfg );
    ADC24_MAP_MIKROBUS( adc24_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == adc24_init( &adc24, &adc24_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    ctrl.ch_sel = ADC24_CH_SEL_IN_0;
    ctrl.pm = ADC24_PM_NORMAL;
    ctrl.seq_shadow = ADC24_SEQ_SHADOW_AN_INPUT;
    ctrl.weak = ADC24_WEAK_DOUT_THREE_STATE;
    ctrl.range = ADC24_RANGE_VREF_5V;
    ctrl.coding = ADC24_CODING_BIN;

    log_info( &logger, " Application Task " );
    log_printf( &logger, "_____________\r\n" );
}

Application Task

The demo application reads the voltage levels from all 15 analog input channels and displays the results. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void )
{
    uint8_t ch_pos = 0;
    float voltage = 0;
    for ( uint8_t n_cnt = ADC24_CH_SEL_IN_0; n_cnt <= ADC24_CH_SEL_IN_15; n_cnt++ )
    {
        ctrl.ch_sel = n_cnt;
        if ( ADC24_OK == adc24_get_voltage( &adc24, ctrl, &ch_pos, &voltage ) )
        {
            log_printf( &logger, " IN%u : %.3f V\r\n", ( uint16_t ) ch_pos, voltage );
        }
        Delay_ms ( 100 );  
    }
    log_printf( &logger, "_____________\r\n" );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.ADC24

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

LED Driver 17 Click

0

LED Driver 17 Click is a compact add-on board that offers a simple solution for controlling multiple LEDs, making it an ideal choice for various applications. This board features the LTR3755, a highly efficient DC/DC controller from Analog Devices that operates as a constant-current source. It can easily drive high current LEDs and features onboard low-side external N-channel power MOSFETs driven from an internal regulated supply. The LED Driver 17 Click is capable of stable operation over a wide supply range and offers several LED protection features, including overvoltage and overcurrent protection. Additionally, the frequency adjust pin allows users to program the switching frequency from 100kHz to 1MHz, optimizing efficiency and performance.

[Learn More]

Bluetooth Click

0

With the range up to a 100m and low power consumption, Bluetooth Click is a great solution if you are looking for a simple way to integrate Bluetooth 2.1 communication to your device. It features the RN-41 low power, class 1 Bluetooth radio module. Bluetooth Click communicates with the target board MCU through UART interface and is designed to run on 3.3V power supply only.

[Learn More]

A5000 Plug n Trust Click

0

A5000 Plug&Trust Click is a compact add-on board representing a ready-to-use secure IoT authenticator. This board features the A5000, an Edge Lock® Secure Authenticator from NXP Semiconductors. The A5000 provides a root of trust at the IC level, giving an IoT authentication system state-of-the-art security capability. It allows for securely storing and provisioning credentials and performing cryptographic operations for security-critical communication and authentication functions. It has an independent Common Criteria EAL 6+ security certification up to OS level and supports ECC asymmetric cryptographic and AES/3DES symmetric algorithms.

[Learn More]