TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (397 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (127 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140720 times)
  2. FAT32 Library (73200 times)
  3. Network Ethernet Library (58140 times)
  4. USB Device Library (48292 times)
  5. Network WiFi Library (43928 times)
  6. FT800 Library (43421 times)
  7. GSM click (30419 times)
  8. mikroSDK (29123 times)
  9. PID Library (27132 times)
  10. microSD click (26779 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Rec N Play 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.2

mikroSDK Library: 2.0.0.0

Category: Signal processing

Downloaded: 37 times

Not followed.

License: MIT license  

Rec&Play 2 Click is a compact add-on board for voice recording and playback applications. It is based on the ISD1616B, a single-message voice record and playback IC from Nuvoton. The board features an on-chip oscillator, a microphone preamplifier with Automatic Gain Control (AGC), an omnidirectional microphone, and a speaker driver for high-quality audio recording and playback. Voice data is stored in onboard Flash memory without digital compression, ensuring clear and reliable sound. It supports both manual and digital control, as well as flexible message durations from 10 to 26 seconds.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Rec N Play 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Rec N Play 2 Click" changes.

Do you want to report abuse regarding "Rec N Play 2 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Rec N Play 2 Click

Rec&Play 2 Click is a compact add-on board for voice recording and playback applications. It is based on the ISD1616B, a single-message voice record and playback IC from Nuvoton. The board features an on-chip oscillator, a microphone preamplifier with Automatic Gain Control (AGC), an omnidirectional microphone, and a speaker driver for high-quality audio recording and playback. Voice data is stored in onboard Flash memory without digital compression, ensuring clear and reliable sound. It supports both manual and digital control, as well as flexible message durations from 10 to 26 seconds.

recplay2_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jan 2024.
  • Type : GPIO type

Software Support

We provide a library for the Rec N Play 2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Rec N Play 2 Click driver.

Standard key functions :

  • recnplay2_cfg_setup Config Object Initialization function.

    void recnplay2_cfg_setup ( recnplay2_cfg_t *cfg );
  • recnplay2_init Initialization function.

    err_t recnplay2_init ( recnplay2_t *ctx, recnplay2_cfg_t *cfg );
  • recnplay2_default_cfg Click Default Configuration function.

    void recnplay2_default_cfg ( recnplay2_t *ctx );

Example key functions :

  • recnplay2_set_pl_pin This function sets the PL pin on the selected level of Rec N Play 2 Click board.

    void recnplay2_set_pl_pin ( recnplay2_t *ctx, uint8_t pin_state );
  • recnplay2_record_sound This function is used to record sound with Rec N Play 2 Click board.

    err_t recnplay2_record_sound ( recnplay2_t *ctx, uint16_t rec_len );
  • recnplay2_play_sound This function is used to play recorded sounds with Rec N Play 2 Click board.

    err_t recnplay2_play_sound ( recnplay2_t *ctx, uint16_t play_len );

Example Description

This example demonstrates the use of Rec N Play 2 Click board by recording and then playing recorded sound.

The demo application is composed of two sections :

Application Init

Initializes the driver, performs the Click default configuration.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    recnplay2_cfg_t recnplay2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    recnplay2_cfg_setup( &recnplay2_cfg );
    RECNPLAY2_MAP_MIKROBUS( recnplay2_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == recnplay2_init( &recnplay2, &recnplay2_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    recnplay2_default_cfg ( &recnplay2 );

    log_info( &logger, " Application Task " );
}

Application Task

Recording sound for 5 seconds, then playing it back.

void application_task ( void ) 
{
    log_printf( &logger, " Recording... \r\n" );
    recnplay2_record_sound( &recnplay2, RECORDING_LEN );
    Delay_ms ( 1000 );

    log_printf( &logger, " Playing... \r\n" );
    recnplay2_play_sound( &recnplay2, RECORDING_LEN );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.RecNPlay2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

M-BUS RF 3 Click

0

M-BUS RF 3 Click is a compact add-on board designed for utility metering and various telemetry applications. This board features the Metis-II (2607021183000), an 868MHz radio module from Würth Elektronik. It integrates an MSP430 microcontroller and a CC1125 RF chip-set to ensure efficient data transmission. Key features include a frequency range of 868.3MHz to 869.525MHz, support for the Wireless M-BUS EN13757-4:2013 and Open Metering System (OMS) standards, and communication capabilities up to 1000 meters in line-of-sight conditions. The board also offers energy-saving functionalities such as Wake-On-Radio, an output power of +14dBm output, and AES-128 encryption for secure communication.

[Learn More]

Thermo click

0

Example for Thermo click board in mikroBUS form factor. It is a simple demonstration of how to read the temperature from a thermocouple. It uses MAX31855 chip for Thermocouple-to-Digital conversion. Displayed temperature is in degree Celsius.

[Learn More]

Brushless 31 Click

0

Brushless 31 Click is a compact add-on board for precise and efficient brushless motor control. This board features the TB6605FTG, a three-phase full sine-wave brushless motor controller from Toshiba Semiconductor. The board features six onboard external N-channel MOSFETs for smooth motor operation, sine-wave PWM driving with 2-phase modulation for high efficiency and low noise, and includes essential functions like dead time, brake, and manual/auto lead-angle control. It supports clockwise and counterclockwise rotation and offers motor lock protection for added safety. Brushless 31 Click is ideal for home appliances, fans, and office equipment applications, where reliable and precise motor control is critical.

[Learn More]