TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (400 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (128 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140761 times)
  2. FAT32 Library (73346 times)
  3. Network Ethernet Library (58194 times)
  4. USB Device Library (48380 times)
  5. Network WiFi Library (43975 times)
  6. FT800 Library (43533 times)
  7. GSM click (30466 times)
  8. mikroSDK (29170 times)
  9. PID Library (27166 times)
  10. microSD click (26847 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Battery Source Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.3

mikroSDK Library: 2.0.0.0

Category: Buck-Boost

Downloaded: 63 times

Not followed.

License: MIT license  

Battery Source Click is a compact add-on board designed to boost power from a battery for portable applications. This board features the TPS81256, a high-efficiency step-up converter from Texas Instruments. The board boosts input voltage (2.5V to 5.5V) to 5V/1A on a USB Type-C connector. It operates at a 4MHz switching frequency, enters Power-Save mode at light loads, and reduces supply current to 43μA during light load operation. The board supports over 3W output power and has an input current of less than 1µA in shutdown mode, maximizing battery life.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Battery Source Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Battery Source Click" changes.

Do you want to report abuse regarding "Battery Source Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Battery Source Click

Battery Source Click is a compact add-on board designed to boost power from a battery for portable applications. This board features the TPS81256, a high-efficiency step-up converter from Texas Instruments. The board boosts input voltage (2.5V to 5.5V) to 5V/1A on a USB Type-C connector. It operates at a 4MHz switching frequency, enters Power-Save mode at light loads, and reduces supply current to 43μA during light load operation. The board supports over 3W output power and has an input current of less than 1µA in shutdown mode, maximizing battery life.

batterysource_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Feb 2024.
  • Type : GPIO type

Software Support

We provide a library for the Battery Source Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Battery Source Click driver.

Standard key functions :

  • batterysource_cfg_setup Config Object Initialization function.

    void batterysource_cfg_setup ( batterysource_cfg_t *cfg );
  • batterysource_init Initialization function.

    err_t batterysource_init ( batterysource_t *ctx, batterysource_cfg_t *cfg );

Example key functions :

  • batterysource_set_output This function is used to set output state of Battery Source Click board.
    void batterysource_set_output ( batterysource_t *ctx, uint8_t output_state );

Example Description

This example demonstrates the use of Battery Source Click board, by changing state of the output.

The demo application is composed of two sections :

Application Init

Initializes the driver and disables the output.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    batterysource_cfg_t batterysource_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    batterysource_cfg_setup( &batterysource_cfg );
    BATTERYSOURCE_MAP_MIKROBUS( batterysource_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == batterysource_init( &batterysource, &batterysource_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    batterysource_set_output( &batterysource, BATTERYSOURCE_DISABLE_OUTPUT );

    log_info( &logger, " Application Task " );
}

Application Task

Enabling output for 5 seconds, then disabling it for 5 seconds.

void application_task ( void ) 
{
    log_printf( &logger, " Output is enabled \r\n" );
    batterysource_set_output( &batterysource, BATTERYSOURCE_ENABLE_OUTPUT );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, " Output is disabled \r\n" );
    batterysource_set_output( &batterysource, BATTERYSOURCE_DISABLE_OUTPUT );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.BatterySource

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

OBDII Click

0

OBDII Click offers a unique opportunity to tap into the car diagnostic systems. It features the STN1110 Multiprotocol OBD to UART Interface, developed by the ScanTool technologies. This Click can be used for the communication with the Electronic Control Unit (ECU) of a vehicle, via several different OBD II diagnostic protocols such as CAN, K LINE, L LINE and J1850. The STN1110 IC is used to process requests sent by the MCU via the UART interface and return back the responses from the ECU network nodes.

[Learn More]

Current 5 Click

0

Current 5 Click is a compact add-on board that provides a precise and accurate current sensing solution. This board features the INA381, a high-speed current-sense amplifier with an integrated comparator from Texas Instruments. This device has selectable operating modes (transparent or latched) and detects overcurrent conditions by measuring the voltage developed across a current shunt resistor. Then it compares that voltage to a user-defined threshold limit set by the comparator reference potentiometer. The current-shunt monitor can measure differential voltage signals on common-mode voltages that vary from –0.2V to 26V, independent of the supply voltage. This Click board™ delivers higher performance to applications such as test and measurement, load and power supplies monitoring, low-side phase motor control, and many more.

[Learn More]

NB IoT 4 Click

0

NB IoT 4 Click is a compact add-on board that contains a cellular IoT-based module with integrated eSIM for global data connectivity. This board features the C1-RM, a three-band NB-IoT, IoT/2G wireless communication module supporting Band 3, 5, and 8 mainly applied to low power data transmission service from Cavli Wireless.

[Learn More]