We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.4
mikroSDK Library: 2.0.0.0
Category: ADC
Downloaded: 39 times
Not followed.
License: MIT license
The ISO ADC Click is add-on board current-shunt measurement device with isolated delta-sigma modulator. This Click board™ is based on AMC1204BDWR provide a single-chip solution for measuring the small signal of a shunt resistor across an isolated barrier from Texas Instruments. ISO ADC Click contains shunt resistor, these types of resistors are typically used to sense currents in motor control inverters, green energy generation systems, and other industrial applications.
Do you want to subscribe in order to receive notifications regarding "ISO ADC Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "ISO ADC Click" changes.
Do you want to report abuse regarding "ISO ADC Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
5651_iso_adc_click.zip [502.24KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V |
|
The ISO ADC Click is add-on board current-shunt measurement device with isolated delta-sigma modulator. This Click board™ is based on AMC1204BDWR provide a single-chip solution for measuring the small signal of a shunt resistor across an isolated barrier from Texas Instruments. ISO ADC Click contains shunt resistor, these types of resistors are typically used to sense currents in motor control inverters, green energy generation systems, and other industrial applications.
We provide a library for the ISO ADC Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for ISO ADC Click driver.
isoadc_cfg_setup
Config Object Initialization function.
void isoadc_cfg_setup ( isoadc_cfg_t *cfg );
isoadc_init
Initialization function.
err_t isoadc_init ( isoadc_t *ctx, isoadc_cfg_t *cfg );
isoadc_read_voltage
This function reads a raw ADC in ISOADC_ADC_NUM_AVERAGES number of samples and converts it to a shunt voltage in millivolts.
err_t isoadc_read_voltage ( isoadc_t *ctx, float *voltage );
isoadc_get_current
This function converts a shunt voltage input to a load current in milliampers.
float isoadc_get_current ( float voltage );
isoadc_get_power
This function converts a shunt voltage input to electrical power in watts.
float isoadc_get_power ( isoadc_t *ctx, float voltage );
This example demonstrates the use of ISO ADC Click board by reading the shunt voltage, current, and power.
The demo application is composed of two sections :
Initializes the driver and sets the external voltage reference.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
isoadc_cfg_t isoadc_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
isoadc_cfg_setup( &isoadc_cfg );
ISOADC_MAP_MIKROBUS( isoadc_cfg, MIKROBUS_1 );
if ( SPI_MASTER_ERROR == isoadc_init( &isoadc, &isoadc_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
isoadc_set_vext ( &isoadc, ISOADC_VEXT_5V );
log_info( &logger, " Application Task " );
}
Reads a 10 samples of a shunt voltage measurement, then averages and calculates the current and power from it. All data is displayed on the USB UART.
void application_task ( void )
{
float voltage = 0;
float avg_voltage = 0;
uint16_t avg_cnt = 0;
log_printf( &logger, " --- MEASUREMENT IN PROGRESS ---\r\n" );
log_info( &logger, "Keep the load and power supply stable during the measurement process\r\n" );
while ( avg_cnt < ISOADC_VOLTAGE_NUM_AVERAGES )
{
if ( ISOADC_OK == isoadc_read_voltage ( &isoadc, &voltage ) )
{
avg_voltage += voltage;
avg_cnt++;
}
}
voltage = avg_voltage / ISOADC_VOLTAGE_NUM_AVERAGES;
log_printf( &logger, " Shunt Voltage: %.1f mV\r\n", voltage );
log_printf( &logger, " Current: %.3f mA\r\n", isoadc_get_current ( voltage ) );
log_printf( &logger, " Power: %.3f W\r\n", isoadc_get_power ( &isoadc, voltage ) );
log_printf( &logger, "-------------------------\r\n\n" );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.