TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141592 times)
  2. FAT32 Library (74562 times)
  3. Network Ethernet Library (59075 times)
  4. USB Device Library (49099 times)
  5. Network WiFi Library (44842 times)
  6. FT800 Library (44399 times)
  7. GSM click (31067 times)
  8. mikroSDK (29943 times)
  9. microSD click (27504 times)
  10. PID Library (27493 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Stepper Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.3

mikroSDK Library: 2.0.0.0

Category: Stepper

Downloaded: 109 times

Not followed.

License: MIT license  

Stepper Click is a complete solution for driving bipolar stepper motors with full/half and micro-steps. It features the A3967 IC from Allegro Microsystems with proprietary Satlington™ sink drivers on its outputs, which ensure high efficiency and reliable operation of the internal H-Bridges. This IC has the integrated translation section, used to simplify the control: using simple step control inputs from the host MCU, the stepper motor can be driven in both directions, with the predetermined step sizes. In addition, the output current is regulated allowing for noiseless operation of the stepper motor, with no resonance and ringing typically observed at unregulated stepper driver designs.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Stepper Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Stepper Click" changes.

Do you want to report abuse regarding "Stepper Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Stepper Click

Stepper Click is a complete solution for driving bipolar stepper motors with full/half and micro-steps. It features the A3967 IC from Allegro Microsystems with proprietary Satlington™ sink drivers on its outputs, which ensure high efficiency and reliable operation of the internal H-Bridges. This IC has the integrated translation section, used to simplify the control: using simple step control inputs from the host MCU, the stepper motor can be driven in both directions, with the predetermined step sizes. In addition, the output current is regulated allowing for noiseless operation of the stepper motor, with no resonance and ringing typically observed at unregulated stepper driver designs.

stepper_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Feb 2024.
  • Type : GPIO type

Software Support

We provide a library for the Stepper Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Stepper Click driver.

Standard key functions :

  • stepper_cfg_setup Config Object Initialization function.

    void stepper_cfg_setup ( stepper_cfg_t *cfg );
  • stepper_init Initialization function.

    err_t stepper_init ( stepper_t *ctx, stepper_cfg_t *cfg );
  • stepper_default_cfg Click Default Configuration function.

    void stepper_default_cfg ( stepper_t *ctx );

Example key functions :

  • stepper_set_step_mode This function sets the step mode resolution settings.

    void stepper_set_step_mode ( stepper_t *ctx, uint8_t mode );
  • stepper_set_direction This function sets the motor direction by setting the DIR pin logic state.

    void stepper_set_direction ( stepper_t *ctx, uint8_t dir );
  • stepper_drive_motor This function drives the motor for the specific number of steps at the selected speed.

    void stepper_drive_motor ( stepper_t *ctx, uint32_t steps, uint8_t speed );

Example Description

This example demonstrates the use of the Stepper Click board by driving the motor in both directions for a desired number of steps.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    stepper_cfg_t stepper_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    stepper_cfg_setup( &stepper_cfg );
    STEPPER_MAP_MIKROBUS( stepper_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == stepper_init( &stepper, &stepper_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    stepper_default_cfg ( &stepper );

    log_info( &logger, " Application Task " );
}

Application Task

Drives the motor clockwise for 64 full steps and then counter-clockiwse for 128 half steps with 2 seconds delay before changing the direction. All data is being logged on the USB UART where you can track the program flow.

void application_task ( void )
{
    log_printf ( &logger, " Move 64 full steps clockwise \r\n\n" );
    stepper_set_step_mode ( &stepper, STEPPER_MODE_FULL_STEP );
    stepper_set_direction ( &stepper, STEPPER_DIR_CW );
    stepper_drive_motor ( &stepper, 64, STEPPER_SPEED_FAST );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf ( &logger, " Move 128 half steps counter-clockwise \r\n\n" );
    stepper_set_step_mode ( &stepper, STEPPER_MODE_HALF_STEP );
    stepper_set_direction ( &stepper, STEPPER_DIR_CCW );
    stepper_drive_motor ( &stepper, 128, STEPPER_SPEED_VERY_FAST );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Note

Step Motor 5v [MIKROE-1530] is a fully compatible stepper motor for this Click board: https://www.mikroe.com/step-motor-5v

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Stepper

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Vibro Motor 3 Click

0

Vibro Motor 3 Click is a compact add-on board that makes an ideal solution for adding simple haptic feedback in any design. This board features the G0832022D, a coin-sized linear resonant actuator (LRA) that generates vibration/haptic feedback in the Z plane, perpendicular to the motor's surface from Jinlong Machinery & Electronics, Inc.

[Learn More]

CAN Isolator click

5

CAN Isolator click provides isolated CAN communication. It carries the ADM3053 signal and power isolated CAN transceiver with an integrated isolated DC-to-DC converter. The click is designed to run on either 3.3V or 5V power supply. CAN Isolator click communicates with the target microcontroller over UART interface.

[Learn More]

Matrix G Click

0

Matrix G Click is a mikroBUS add-on board with two green 5x7 matrices driven by two MAX7219 8-bit LED Display Drivers. The active area of each matrix is 7.62mm high and 5.08 mm wide. 7x5 is a standard resolution for displaying ASCII characters, so the Click is essentially a dual-character display capable of showing letters in more readable typefaces compared to a 14-segment display. The Click communicates with the target MCU through the mikroBUS SPI interface with two separate Chip Select lines for each matrix (CSL for the left, CSR for the right). This board is designed to use a 5V power supply.

[Learn More]