TOP Contributors

  1. MIKROE (2751 codes)
  2. Alcides Ramos (372 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139058 times)
  2. FAT32 Library (71588 times)
  3. Network Ethernet Library (56988 times)
  4. USB Device Library (47330 times)
  5. Network WiFi Library (43006 times)
  6. FT800 Library (42297 times)
  7. GSM click (29771 times)
  8. mikroSDK (27874 times)
  9. PID Library (26858 times)
  10. microSD click (26129 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Stepper 14 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.3

mikroSDK Library: 2.0.0.0

Category: Stepper

Downloaded: 33 times

Not followed.

License: MIT license  

The Stepper 14 Click is a Click board™ that features the DRV8847PWPR, a step motor driver, from Texas Instruments. This Click board™ provides a bipolar step motor controle, It features an H-bridge bipolar step motor driver, which supports full-, half-, quarter-, or eighth-step modes. This Click board™ also carries a port expander so that the communication can be done with a minimal number of pins, through the mikroBUS™ I2C bus.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Stepper 14 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Stepper 14 Click" changes.

Do you want to report abuse regarding "Stepper 14 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Stepper 14 Click

The Stepper 14 Click is a Click board™ that features the DRV8847PWPR, a step motor driver, from Texas Instruments. This Click board™ provides a bipolar step motor controle, It features an H-bridge bipolar step motor driver, which supports full-, half-, quarter-, or eighth-step modes. This Click board™ also carries a port expander so that the communication can be done with a minimal number of pins, through the mikroBUS™ I2C bus.

stepper14_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Mar 2024.
  • Type : I2C type

Software Support

We provide a library for the Stepper 14 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Stepper 14 Click driver.

Standard key functions :

  • stepper14_cfg_setup Config Object Initialization function.

    void stepper14_cfg_setup ( stepper14_cfg_t *cfg );
  • stepper14_init Initialization function.

    err_t stepper14_init ( stepper14_t *ctx, stepper14_cfg_t *cfg );
  • stepper14_default_cfg Click Default Configuration function.

    err_t stepper14_default_cfg ( stepper14_t *ctx );

Example key functions :

  • stepper14_set_direction This function sets the motor direction to clockwise or counter-clockwise in ctx->direction.

    void stepper14_set_direction ( stepper14_t *ctx, uint8_t dir );
  • stepper14_set_step_mode This function sets the step mode resolution settings in ctx->step_mode.

    void stepper14_set_step_mode ( stepper14_t *ctx, uint8_t mode );
  • stepper14_drive_motor This function drives the motor for the specific number of steps at the selected speed.

    err_t stepper14_drive_motor ( stepper14_t *ctx, uint32_t steps, uint8_t speed );

Example Description

This example demonstrates the use of the Stepper 14 Click board by driving the motor in both directions for a desired number of steps.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    stepper14_cfg_t stepper14_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    stepper14_cfg_setup( &stepper14_cfg );
    STEPPER14_MAP_MIKROBUS( stepper14_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == stepper14_init( &stepper14, &stepper14_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( STEPPER14_ERROR == stepper14_default_cfg ( &stepper14 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Drives the motor clockwise for 200 full steps and then counter-clockwise for 400 half steps with a 2 seconds delay on driving mode change. All data is being logged on the USB UART where you can track the program flow.

void application_task ( void )
{
    log_printf ( &logger, " Move 200 full steps clockwise, speed: medium\r\n\n" );
    stepper14_set_direction ( &stepper14, STEPPER14_DIR_CW );
    stepper14_set_step_mode ( &stepper14, STEPPER14_MODE_FULL_STEP );
    stepper14_drive_motor ( &stepper14, 200, STEPPER14_SPEED_MEDIUM );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf ( &logger, " Move 400 half steps counter-clockwise, speed: fast\r\n\n" );
    stepper14_set_direction ( &stepper14, STEPPER14_DIR_CCW );
    stepper14_set_step_mode ( &stepper14, STEPPER14_MODE_HALF_STEP );
    stepper14_drive_motor ( &stepper14, 400, STEPPER14_SPEED_FAST );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Stepper14

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

FRAM 3 Click

5

The FRAM 3 Click is a Click boardâ„¢ that carries a ferroelectric RAM module. Ferroelectric RAM, also known as FRAM, is a non-volatile memory type, with characteristics that are comparable to much faster DRAM memory modules.

[Learn More]

IR eclipse click

5

This is a example which demonstrates the use of IR eclipse click board. The EE-SS198 is a photointerrupter sensor that consists of an IR diode and phototransistor in one package When the beam from the transmitter is eclipsed by placing an object in the gap (like a piece of paper), the sensor is activated.

[Learn More]

ECG 7 Click

0

ECG 7 Click is a compact add-on board that records the heart's electrical activity. This board features the MCP6N16, a single zero-drift instrumentation amplifier with selectable gain from Microchip. In addition to the jack connector provided for connecting the cable with ECG electrodes, this Click boardâ„¢ offers the possibility of connecting electrodes through screw terminals or an onboard header if the electrode connection does not match the jack connector. Besides, the user is allowed to process the output signal in analog or digital form.

[Learn More]