TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (392 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (123 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140535 times)
  2. FAT32 Library (73023 times)
  3. Network Ethernet Library (58028 times)
  4. USB Device Library (48212 times)
  5. Network WiFi Library (43821 times)
  6. FT800 Library (43293 times)
  7. GSM click (30358 times)
  8. mikroSDK (28985 times)
  9. PID Library (27116 times)
  10. microSD click (26718 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Stepper 14 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.3

mikroSDK Library: 2.0.0.0

Category: Stepper

Downloaded: 58 times

Not followed.

License: MIT license  

The Stepper 14 Click is a Click board™ that features the DRV8847PWPR, a step motor driver, from Texas Instruments. This Click board™ provides a bipolar step motor controle, It features an H-bridge bipolar step motor driver, which supports full-, half-, quarter-, or eighth-step modes. This Click board™ also carries a port expander so that the communication can be done with a minimal number of pins, through the mikroBUS™ I2C bus.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Stepper 14 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Stepper 14 Click" changes.

Do you want to report abuse regarding "Stepper 14 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Stepper 14 Click

The Stepper 14 Click is a Click board™ that features the DRV8847PWPR, a step motor driver, from Texas Instruments. This Click board™ provides a bipolar step motor controle, It features an H-bridge bipolar step motor driver, which supports full-, half-, quarter-, or eighth-step modes. This Click board™ also carries a port expander so that the communication can be done with a minimal number of pins, through the mikroBUS™ I2C bus.

stepper14_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Mar 2024.
  • Type : I2C type

Software Support

We provide a library for the Stepper 14 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Stepper 14 Click driver.

Standard key functions :

  • stepper14_cfg_setup Config Object Initialization function.

    void stepper14_cfg_setup ( stepper14_cfg_t *cfg );
  • stepper14_init Initialization function.

    err_t stepper14_init ( stepper14_t *ctx, stepper14_cfg_t *cfg );
  • stepper14_default_cfg Click Default Configuration function.

    err_t stepper14_default_cfg ( stepper14_t *ctx );

Example key functions :

  • stepper14_set_direction This function sets the motor direction to clockwise or counter-clockwise in ctx->direction.

    void stepper14_set_direction ( stepper14_t *ctx, uint8_t dir );
  • stepper14_set_step_mode This function sets the step mode resolution settings in ctx->step_mode.

    void stepper14_set_step_mode ( stepper14_t *ctx, uint8_t mode );
  • stepper14_drive_motor This function drives the motor for the specific number of steps at the selected speed.

    err_t stepper14_drive_motor ( stepper14_t *ctx, uint32_t steps, uint8_t speed );

Example Description

This example demonstrates the use of the Stepper 14 Click board by driving the motor in both directions for a desired number of steps.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    stepper14_cfg_t stepper14_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    stepper14_cfg_setup( &stepper14_cfg );
    STEPPER14_MAP_MIKROBUS( stepper14_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == stepper14_init( &stepper14, &stepper14_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( STEPPER14_ERROR == stepper14_default_cfg ( &stepper14 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Drives the motor clockwise for 200 full steps and then counter-clockwise for 400 half steps with a 2 seconds delay on driving mode change. All data is being logged on the USB UART where you can track the program flow.

void application_task ( void )
{
    log_printf ( &logger, " Move 200 full steps clockwise, speed: medium\r\n\n" );
    stepper14_set_direction ( &stepper14, STEPPER14_DIR_CW );
    stepper14_set_step_mode ( &stepper14, STEPPER14_MODE_FULL_STEP );
    stepper14_drive_motor ( &stepper14, 200, STEPPER14_SPEED_MEDIUM );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf ( &logger, " Move 400 half steps counter-clockwise, speed: fast\r\n\n" );
    stepper14_set_direction ( &stepper14, STEPPER14_DIR_CCW );
    stepper14_set_step_mode ( &stepper14, STEPPER14_MODE_HALF_STEP );
    stepper14_drive_motor ( &stepper14, 400, STEPPER14_SPEED_FAST );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Stepper14

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Current 9 Click

0

Current 9 Click is a compact add-on board providing a precise and accurate current sensing solution. This board features the CT415-HSN830DR, high-bandwidth and ultra-low-noise XtremeSense® TMR current sensor designed for the current range up to 30A from Crocus Technology. This sensor also features an integrated current-carrying conductor which handles rated current and generates a current measurement as a linear analog output voltage, accomplishing a total output error of about ±1% full-scale. After that, the user is allowed to process the output voltage in analog or digital form.

[Learn More]

ADC 10 Click

0

ADC 10 Click is a compact add-on board that contains a high-performance data converter. This board features the ADS122U04, a 24-bit precision ΔΣ analog-to-digital converter with UART compatible interface from Texas Instruments.

[Learn More]

Opto 4 click

5

Opto 4 click is a galvanically isolated power switch, which uses a power MOSFET in combination with the optocoupler.

[Learn More]