TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141815 times)
  2. FAT32 Library (74951 times)
  3. Network Ethernet Library (59306 times)
  4. USB Device Library (49305 times)
  5. Network WiFi Library (45102 times)
  6. FT800 Library (44668 times)
  7. GSM click (31280 times)
  8. mikroSDK (30209 times)
  9. microSD click (27656 times)
  10. PID Library (27562 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Brushless 30 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.3

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 92 times

Not followed.

License: MIT license  

Brushless 30 Click is a compact add-on board for precise and reliable control of brushless motors. This board features the TB9083FTG, a gate-driver IC from Toshiba Semiconductor, known for its robust performance in automotive environments. It also includes additional header pins for 6 PWM inputs , safety relays and current sense amplifiers. Comprehensive error detection capabilities, as required from automotive devices, are included. Brushless 30 Click is ideal for demanding automotive applications such as electric power steering (EPS), powered brakes, and automotive pumps where high-precision motor control is crucial.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Brushless 30 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Brushless 30 Click" changes.

Do you want to report abuse regarding "Brushless 30 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Brushless 30 Click

Brushless 30 Click is a compact add-on board for precise and reliable control of brushless motors. This board features the TB9083FTG, a gate-driver IC from Toshiba Semiconductor, known for its robust performance in automotive environments. It also includes additional header pins for 6 PWM inputs , safety relays and current sense amplifiers. Comprehensive error detection capabilities, as required from automotive devices, are included. Brushless 30 Click is ideal for demanding automotive applications such as electric power steering (EPS), powered brakes, and automotive pumps where high-precision motor control is crucial.

brushless30_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Aug 2024.
  • Type : SPI type

Software Support

We provide a library for the Brushless 30 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Brushless 30 Click driver.

Standard key functions :

  • brushless30_cfg_setup Config Object Initialization function.

    void brushless30_cfg_setup ( brushless30_cfg_t *cfg );
  • brushless30_init Initialization function.

    err_t brushless30_init ( brushless30_t *ctx, brushless30_cfg_t *cfg );
  • brushless30_default_cfg Click Default Configuration function.

    err_t brushless30_default_cfg ( brushless30_t *ctx );

Example key functions :

  • brushless30_write_reg This function writes a data word to the selected register by using SPI serial interface.

    err_t brushless30_write_reg ( brushless30_t *ctx, uint8_t reg, uint16_t data_in );
  • brushless30_read_reg This function reads a data word from the selected register by using SPI serial interface.

    err_t brushless30_read_reg ( brushless30_t *ctx, uint8_t reg, uint16_t *data_out );
  • brushless30_get_diag_pin This function returns the DIAG pin logic state.

    uint8_t brushless30_get_diag_pin ( brushless30_t *ctx );

Example Description

This example configures the Brushless 30 Click board and makes it ready for the motor control over 6 PWM input signals.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    brushless30_cfg_t brushless30_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    brushless30_cfg_setup( &brushless30_cfg );
    BRUSHLESS30_MAP_MIKROBUS( brushless30_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == brushless30_init( &brushless30, &brushless30_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( BRUSHLESS30_ERROR == brushless30_default_cfg ( &brushless30 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_printf( &logger, " Click is configured successfully.\r\n" );
    log_printf( &logger, " Apply a 6 PWM signals to UVW H/L pins to drive the motor.\r\n" );

    log_info( &logger, " Application Task " );
}

Application Task

Monitors the DIAG pin state, displays the STAT1 and STAT2 registers on the USB UART, and clears the set flags.

void application_task ( void )
{
    uint16_t status = 0;
    if ( !brushless30_get_diag_pin ( &brushless30 ) )
    {
        if ( BRUSHLESS30_OK == brushless30_read_reg ( &brushless30, BRUSHLESS30_REG_STAT1, &status ) )
        {
            if ( status )
            {
                log_printf( &logger, " STAT1: 0x%.4X\r\n", status );
                if ( BRUSHLESS30_OK == brushless30_write_reg ( &brushless30, BRUSHLESS30_REG_STAT1, status ) )
                {
                    log_printf( &logger, " STAT1: cleared\r\n" );
                }
            }
        }

        if ( BRUSHLESS30_OK == brushless30_read_reg ( &brushless30, BRUSHLESS30_REG_STAT2, &status ) )
        {
            if ( status )
            {
                log_printf( &logger, " STAT2: 0x%.4X\r\n", status );
                if ( BRUSHLESS30_OK == brushless30_write_reg ( &brushless30, BRUSHLESS30_REG_STAT2, status ) )
                {
                    log_printf( &logger, " STAT2: cleared\r\n" );
                }
            }
        }

        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Brushless30

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

RTC 10 click

5

RTC 10 Click is a real time clock module which has an extremely low power consumption, allowing it to be used with a single button cell battery, for an extended period of time. It features the DS3231M, a low-cost, extremely accurate, I2C realtime clock (RTC) from Maxim Integrated.

[Learn More]

Microwave click

5

Microwave click detects movement, thanks to the PD-V11 a 24GHz microwave motion sensor. The typical use for Microwave click is a proximity detector in various applications and devices.

[Learn More]

Flash Click

0

Flash Click is 8,388,608 bits (8 Mbit) on a Click board, organized into 1,048,576 bytes (1 MB). In other words, this Click board is a Flash memory medium with the capacity of 1 MB. The used Flash module has very good endurance and it can withstand up to 100,000 write cycles, with the data retention period of about 20 years.

[Learn More]