We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-12-12
Package Version: 2.1.0.1
mikroSDK Library: 2.0.0.0
Category: Motion
Downloaded: 16 times
Not followed.
License: MIT license
6DOF IMU 25 Click is a compact add-on board for biopotential signal detection and motion tracking applications. This board features the ST1VAFE6AX biosensor from STMicroelectronics, which combines a vertical analog front-end (vAFE) for biopotential sensing with a high-performance 6-axis IMU. The IMU features a 3-axis accelerometer and 3-axis gyroscope with adjustable full-scale ranges, along with advanced functionalities like finite state machine (FSM), adaptive self-configuration (ASC), and a machine learning core (MLC) for on-device processing. The board also includes a 4.5KB FIFO buffer for efficient data handling and supports I2C and SPI communication interfaces for easy integration.
Do you want to subscribe in order to receive notifications regarding "6DOF IMU 25 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "6DOF IMU 25 Click" changes.
Do you want to report abuse regarding "6DOF IMU 25 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
5794_6dof_imu_25_clic.zip [543.41KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
6DOF IMU 25 Click is a compact add-on board for biopotential signal detection and motion tracking applications. This board features the ST1VAFE6AX biosensor from STMicroelectronics, which combines a vertical analog front-end (vAFE) for biopotential sensing with a high-performance 6-axis IMU. The IMU features a 3-axis accelerometer and 3-axis gyroscope with adjustable full-scale ranges, along with advanced functionalities like finite state machine (FSM), adaptive self-configuration (ASC), and a machine learning core (MLC) for on-device processing. The board also includes a 4.5KB FIFO buffer for efficient data handling and supports I2C and SPI communication interfaces for easy integration.
We provide a library for the 6DOF IMU 25 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for 6DOF IMU 25 Click driver.
c6dofimu25_cfg_setup
Config Object Initialization function.
void c6dofimu25_cfg_setup ( c6dofimu25_cfg_t *cfg );
c6dofimu25_init
Initialization function.
err_t c6dofimu25_init ( c6dofimu25_t *ctx, c6dofimu25_cfg_t *cfg );
c6dofimu25_default_cfg
Click Default Configuration function.
err_t c6dofimu25_default_cfg ( c6dofimu25_t *ctx );
c6dofimu25_get_int1_pin
This function returns the interrupt 1 pin logic state.
uint8_t c6dofimu25_get_int1_pin ( c6dofimu25_t *ctx );
c6dofimu25_get_data
This function reads the accelerometer, gyroscope, and temperature measurement data.
err_t c6dofimu25_get_data ( c6dofimu25_t *ctx, c6dofimu25_data_t *data_out );
c6dofimu25_set_accel_fsr
This function sets the accel measurement full scale range.
err_t c6dofimu25_set_accel_fsr ( c6dofimu25_t *ctx, uint8_t fsr );
This example demonstrates the use of 6DOF IMU 25 Click board by reading and displaying the accelerometer and gyroscope data (X, Y, and Z axis) as well as a temperature measurement in degrees Celsius.
The demo application is composed of two sections :
Initializes the driver and performs the Click default configuration.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
c6dofimu25_cfg_t c6dofimu25_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
c6dofimu25_cfg_setup( &c6dofimu25_cfg );
C6DOFIMU25_MAP_MIKROBUS( c6dofimu25_cfg, MIKROBUS_1 );
err_t init_flag = c6dofimu25_init( &c6dofimu25, &c6dofimu25_cfg );
if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( C6DOFIMU25_ERROR == c6dofimu25_default_cfg ( &c6dofimu25 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
Waits for a data ready indication and then reads the accelerometer, gyroscope, and temperature measurements. The results are displayed on the USB UART at 7.5 Hz output data rate.
void application_task ( void )
{
c6dofimu25_data_t meas_data;
if ( c6dofimu25_get_int1_pin ( &c6dofimu25 ) )
{
if ( C6DOFIMU25_OK == c6dofimu25_get_data ( &c6dofimu25, &meas_data ) )
{
log_printf( &logger, " Accel X: %.3f g\r\n", meas_data.accel.x );
log_printf( &logger, " Accel Y: %.3f g\r\n", meas_data.accel.y );
log_printf( &logger, " Accel Z: %.3f g\r\n", meas_data.accel.z );
log_printf( &logger, " Gyro X: %.1f dps\r\n", meas_data.gyro.x );
log_printf( &logger, " Gyro Y: %.1f dps\r\n", meas_data.gyro.y );
log_printf( &logger, " Gyro Z: %.1f dps\r\n", meas_data.gyro.z );
log_printf( &logger, " Temperature: %.2f degC\r\n\n", meas_data.temperature );
}
}
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.