We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-12-24
Package Version: 2.1.0.1
mikroSDK Library: 2.0.0.0
Category: BT/BLE
Downloaded: 4 times
Not followed.
License: MIT license
Proteus-e Click is a compact add-on board designed for reliable wireless communication between devices using Bluetooth® LE 5.1 technology. This board features the Proteus-e (2612011024000) radio module from Würth Elektronik, based on a high-performance nRF52 series Bluetooth® LE chip. The module combines a 64MHz ARM Cortex-M4 CPU, 192kB flash memory, and 24kB RAM, delivering up to 4dBm output power with ultra-low power consumption. Communication is established through a UART interface with hardware flow control and includes a reset button, status LED, dedicated GPIO pins, and an external antenna connector for extended range.
Do you want to subscribe in order to receive notifications regarding "Proteus-e Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "Proteus-e Click" changes.
Do you want to report abuse regarding "Proteus-e Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
5813_proteus_e_click.zip [545.67KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for dsPIC XC16 |
|
Proteus-e Click is a compact add-on board designed for reliable wireless communication between devices using Bluetooth® LE 5.1 technology. This board features the Proteus-e (2612011024000) radio module from Würth Elektronik, based on a high-performance nRF52 series Bluetooth® LE chip. The module combines a 64MHz ARM Cortex-M4 CPU, 192kB flash memory, and 24kB RAM, delivering up to 4dBm output power with ultra-low power consumption. Communication is established through a UART interface with hardware flow control and includes a reset button, status LED, dedicated GPIO pins, and an external antenna connector for extended range.
We provide a library for the Proteus-e Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for Proteus-e Click driver.
proteuse_cfg_setup
Config Object Initialization function.
void proteuse_cfg_setup ( proteuse_cfg_t *cfg );
proteuse_init
Initialization function.
err_t proteuse_init ( proteuse_t *ctx, proteuse_cfg_t *cfg );
proteuse_default_cfg
Click Default Configuration function.
err_t proteuse_default_cfg ( proteuse_t *ctx );
proteuse_send_cmd
This function sends a desired command packet from the Click context object.
void proteuse_send_cmd ( proteuse_t *ctx );
proteuse_read_event
This function reads an event packet from the ring buffer and stores it in the Click context object.
err_t proteuse_read_event ( proteuse_t *ctx );
proteuse_get_user_setting
This function reads data from the desired user settings index and stores it in the Click context event packet object.
err_t proteuse_get_user_setting ( proteuse_t *ctx, uint8_t set_idx );
This example demonstrates the use of Proteus-e Click board by processing data from a connected BT device.
The demo application is composed of two sections :
Initializes the driver, resets and configures the Click board, and reads the device info.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
proteuse_cfg_t proteuse_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
proteuse_cfg_setup( &proteuse_cfg );
PROTEUSE_MAP_MIKROBUS( proteuse_cfg, MIKROBUS_1 );
if ( UART_ERROR == proteuse_init( &proteuse, &proteuse_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( PROTEUSE_ERROR == proteuse_default_cfg ( &proteuse ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_printf( &logger, ">> Get device info.\r\n" );
if ( PROTEUSE_OK == proteuse_get_user_setting ( &proteuse, PROTEUSE_SET_IDX_FS_DEVICE_INFO ) )
{
log_printf( &logger, " < OS version: 0x%.2X%.2X\r\n",
( uint16_t ) proteuse.evt_pkt.payload[ 2 ],
( uint16_t ) proteuse.evt_pkt.payload[ 1 ] );
log_printf( &logger, " Build code: 0x%.2X%.2X%.2X%.2X\r\n",
( uint16_t ) proteuse.evt_pkt.payload[ 6 ],
( uint16_t ) proteuse.evt_pkt.payload[ 5 ],
( uint16_t ) proteuse.evt_pkt.payload[ 4 ],
( uint16_t ) proteuse.evt_pkt.payload[ 3 ] );
log_printf( &logger, " Package variant: 0x%.2X%.2X\r\n",
( uint16_t ) proteuse.evt_pkt.payload[ 8 ],
( uint16_t ) proteuse.evt_pkt.payload[ 7 ] );
log_printf( &logger, " Chip ID: 0x%.2X%.2X%.2X%.2X\r\n\n",
( uint16_t ) proteuse.evt_pkt.payload[ 12 ],
( uint16_t ) proteuse.evt_pkt.payload[ 11 ],
( uint16_t ) proteuse.evt_pkt.payload[ 10 ],
( uint16_t ) proteuse.evt_pkt.payload[ 9 ] );
}
log_printf( &logger, ">> Get FW version.\r\n" );
if ( PROTEUSE_OK == proteuse_get_user_setting ( &proteuse, PROTEUSE_SET_IDX_FS_FW_VERSION ) )
{
log_printf( &logger, " < FW version: %u.%u.%u\r\n\n",
( uint16_t ) proteuse.evt_pkt.payload[ 3 ],
( uint16_t ) proteuse.evt_pkt.payload[ 2 ],
( uint16_t ) proteuse.evt_pkt.payload[ 1 ] );
}
log_printf( &logger, ">> Get BT MAC.\r\n" );
if ( PROTEUSE_OK == proteuse_get_user_setting ( &proteuse, PROTEUSE_SET_IDX_FS_BTMAC ) )
{
log_printf( &logger, " < BT MAC: %.2X:%.2X:%.2X:%.2X:%.2X:%.2X\r\n\n",
( uint16_t ) proteuse.evt_pkt.payload[ 6 ],
( uint16_t ) proteuse.evt_pkt.payload[ 5 ],
( uint16_t ) proteuse.evt_pkt.payload[ 4 ],
( uint16_t ) proteuse.evt_pkt.payload[ 3 ],
( uint16_t ) proteuse.evt_pkt.payload[ 2 ],
( uint16_t ) proteuse.evt_pkt.payload[ 1 ] );
}
log_printf( &logger, ">> Set device name to \"%s\".\r\n", ( char * ) DEVICE_NAME );
if ( PROTEUSE_OK == proteuse_set_user_setting ( &proteuse, PROTEUSE_SET_IDX_RF_DEVICE_NAME,
DEVICE_NAME, strlen ( DEVICE_NAME ) ) )
{
log_printf( &logger, " < Request received, settings set successfully\r\n\n" );
}
log_printf( &logger, ">> Get device name.\r\n" );
if ( PROTEUSE_OK == proteuse_get_user_setting ( &proteuse, PROTEUSE_SET_IDX_RF_DEVICE_NAME ) )
{
log_printf( &logger, " < Device name: \"%s\"\r\n\n", &proteuse.evt_pkt.payload[ 1 ] );
}
log_info( &logger, " Application Task " );
}
Reads and parses all the received event packets and displays them the USB UART. All incoming data messages received from the connected device will be echoed back.
void application_task ( void )
{
if ( PROTEUSE_OK == proteuse_read_event ( &proteuse ) )
{
proteuse_parse_event ( &proteuse );
}
}
We recommend using the WE Bluetooth LE Terminal smartphone application for the test.
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.