TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139254 times)
  2. FAT32 Library (71751 times)
  3. Network Ethernet Library (57122 times)
  4. USB Device Library (47430 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42403 times)
  7. GSM click (29835 times)
  8. mikroSDK (28078 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Shake2Wake Click

Rating:

1

Author: MIKROE

Last Updated: 2019-07-30

Package Version: 1.0.0.1

mikroSDK Library: 1.0.0.0

Category: Motion

Downloaded: 3503 times

Followed by: 3 users

License: MIT license  

Shake2Wake click carries an ADXL362 accelerometer, a ADP195 power switch, and a screw terminal for activating external devices using the accelerometer’s built-in activity detection modes.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Shake2Wake Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Shake2Wake Click" changes.

Do you want to report abuse regarding "Shake2Wake Click".

  • mikroSDK Library 2.0.0.0
  • Comments (2)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

Shake2Wake

Shake2Wake

Front and back view of the click board

View full image

Library Description

The library covers all the necessary functions for the usage of the Shake2Wake Click board. The library initializes and defines the SPI driver and drivers that offer a choice for writing and reading data in and from registers. User can read accelerometer data in 8 or 12 bits or have them calulated in "G"s. Temperature can be also read from an internal sensor. Furthermore, user has a choice of many different types of possible settings. For additional functionality, read/write one or multiple bytes, as well as FIFO burst read is available to the user.

Key functions:

  • void shake2wake_getLoResRawData( uint8_t *xVal, uint8_t *yVal, uint8_t *zVal ) - Function is used to read 8-bit accelerometer data per axis.
  • void shake2wake_getRawData( int16_t *xVal, int16_t *yVal, int16_t *zVal ) - Function is used to read the 3-axis raw data from the accelerometer.
  • float shake2wake_readTemperature() - Function is used to read temperature from an internal sensor.

Examples description

The application is composed of three sections :

  • System Initialization - Initializes SPI module, LOG and GPIO structures, sets CS pin as output and INT pin as input.
  • Application Initialization - Initalizes SPI driver, applies default settings and makes an initial log.
  • Application Task - This is an example that shows the capabilities of the Shake2Wake click by reading values of an accelerometer and logging them on USART terminal and, in case of an interrupt, it raises voltage on the connector.
void applicationTask()
{
    shake2wake_getRawData( &xVal, &yVal, &zVal );
    temperature = shake2wake_readTemperature();

    IntToStr( xVal, logTxt );
    mikrobus_logWrite( "X axis: ", _LOG_TEXT );
    mikrobus_logWrite( logTxt, _LOG_LINE );

    IntToStr( yVal, logTxt );
    mikrobus_logWrite( "Y axis: ", _LOG_TEXT );
    mikrobus_logWrite( logTxt, _LOG_LINE );

    IntToStr( zVal, logTxt );
    mikrobus_logWrite( "Z axis: ", _LOG_TEXT );
    mikrobus_logWrite( logTxt, _LOG_LINE );

    FloatToStr( temperature, logTxt );
    mikrobus_logWrite( "Temperature: ", _LOG_TEXT );
    mikrobus_logWrite( logTxt, _LOG_TEXT );
    mikrobus_logWrite( degCel, _LOG_LINE );
    mikrobus_logWrite( "--------------------------", _LOG_LINE );
    Delay_ms( 1000 );
}

Other mikroE Libraries used in the example:

  • SPI
  • UART
  • Conversions

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

Shake2Wake Schematic

Shake2Wake Schematic

Schematic

View full image

Note*

This library represents an easy to use plug in for the supported platforms below.  Installation of the library, examples, and help files are provided by the Package Manager - http://www.mikroe.com/package-manager/

ALSO FROM THIS AUTHOR

DC Motor 17 Click

0

DC Motor 17 Click is a compact add-on board that contains a brushed DC motor driver. This board features the TC78H660FTG, a dual H Bridge driver for one or two brushed motors that incorporate a DMOS with low on-resistance in output transistors from Toshiba Semiconductor. This IC is a PWM controlled constant-current drive with supply voltages from 2.5V to 16V and 2A of output current. It features a sense-resistor less current control architecture and VCC regulator for the internal circuit. Also offers multi-error detect functions with error detection flag output function. This Click board™ is suitable for driving DC motors, controlling the direction of the rotation, as well as brake and regulate the motor current.

[Learn More]

UWB 2 Click

0

UWB 2 Click is a compact add-on board that brings Ultra-Wideband communication to any solution. This board features the DWM3000, an IEEE 802.15-z UWB transceiver module from Qorvo. This module fully aligns with FiRaTM PHY, MAC, and certification development. It uses an integrated UWB antenna to establish wireless communication in UWB channels 5 (6.5GHz) and 9 (8GHz). This Click board™ makes the perfect solution for developing precision real-time location systems (RTLS) using two-way ranging or TDoA schemes in various markets, location-aware wireless sensor networks (WSNs), and more.

[Learn More]

GPS 6 Click

0

GPS 6 Click is a compact add-on board that provides users with positioning, navigation, and timing services. This board features the A2200-A, a GPS receiver module that enables fast acquisition and tracking with SiRFstar IV technology from Lantronix. This small-form-factor module operates with a frequency of 1,575GHz with accuracy from 2 up to 2.5m and fully addresses the demand for the lowest power consumption. The removal of jammers guarantees operation even in hostile environments. High sensitivity during acquisition or while tracking allows for use in many different backgrounds and under the most challenging operating conditions.

[Learn More]