TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139256 times)
  2. FAT32 Library (71751 times)
  3. Network Ethernet Library (57122 times)
  4. USB Device Library (47430 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42404 times)
  7. GSM click (29835 times)
  8. mikroSDK (28078 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Spectral click

Rating:

5

Author: MIKROE

Last Updated: 2018-03-26

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Optical

Downloaded: 3344 times

Not followed.

License: MIT license  

Spectral click is a light multispectral sensing device, which uses the state-of-the-art sensor IC for a very accurate true-color sensing. Spectral click provides a direct reading of the XYZ color coordinates, consistent with the CIE 1931 2. standard color space.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Spectral click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Spectral click" changes.

Do you want to report abuse regarding "Spectral click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)

mikroSDK Library Blog

Spectral click

Spectral click

Native view of the Sprectral click board.

View full image
Spectral click

Spectral click

Front and back view of the Spectral click board.

View full image

Library Description

Library initializes and defines UART driver and functions witch offer a choice to providing direct XYZ color coordinates consistent with the CIE 1931.

  1. Standard Observer color coordinates. It also maps the XYZ coordinates to the x, y (Y) of the 2-dimensional color gamut and scales the coordinates to the CIE 1976 u’v’ coordinate system. The library provides accurate Correlated Color Temperature (CCT) measurements and provides color point deviation from the black body curve for white light color in the delta u’ v’ coordinate system. Check documentation for more details.


Key functions:

  • void spectral_getColor_Data(uint8_t *rsp, uint8_t *) - Reads calibrated X, Y, and Z color data.
  • void spectral_getXYsmall_Data(uint8_t *rsp, uint8_t *xyData) - Reads calibrated x and y for CIE 1931 color gamut.
  • uint8_t spectral_getLUX_Data(uint8_t *rsp) - Reads calibrated LUX value from the sensor.
  • uint8_t spectral_getCCT_Data(uint8_t *rsp) - Reads calibrated CCT value from the sensor.
  • void spectral_getUV_Data(uint8_t *rsp, uint16_t *uvData) - Reads calibrated u’, v’ and u, v for CIE 1976 color gamut.

Examples Description

The demo application is composed of three sections:

  • System Initialization - Initializes all necessary GPIO pins, UART used for
    the communcation with Spectral and UART used for infromation logging.
  • Application Initialization - Initializes driver, reset module and sends
    command for the default module configuration.
  • Application Task - (code snippet) - Sends the command to start reading data.
    Then logs to USBUART, six read values every 1 second.
void applicationTask()
{
 spectral_process();

 spectral_cmdSingle(&cmdData[0]);
 spectral_getData(&dataBuffer[0],&readData[0]);
 IntToStr(readData[0],text);
 mikrobus_logWrite( "-- X value:", _LOG_TEXT );
 mikrobus_logWrite( text, _LOG_LINE );

 IntToStr(readData[1],text);
 mikrobus_logWrite( "-- Y value:", _LOG_TEXT );
 mikrobus_logWrite( text, _LOG_LINE );

 IntToStr(readData[2],text);
 mikrobus_logWrite( "-- Z value:", _LOG_TEXT );
 mikrobus_logWrite( text, _LOG_LINE );

 IntToStr(readData[3],text);
 mikrobus_logWrite( "-- NIR value:", _LOG_TEXT );
 mikrobus_logWrite( text, _LOG_LINE );

 IntToStr(readData[4],text);
 mikrobus_logWrite( "-- D value:", _LOG_TEXT );
 mikrobus_logWrite( text, _LOG_LINE );

 IntToStr(readData[5],text);
 mikrobus_logWrite( "-- C value:", _LOG_TEXT );
 mikrobus_logWrite( text, _LOG_LINE );

 mikrobus_logWrite( "---------------------", _LOG_LINE );

 Delay_1sec();
}

Along with the demo application timer initialization functions are provided. Note that the timer is configured acording to the default develoment system and MCUs, changing the system or MCU may require an update of the timer init and timer ISR functions.

mikroE Libraries used in the example:

  • String
  • Conversions
  • UART

Additional notes and information

Depending on the development board you are using, you may need USB UART click,  USB UART 2 click or  RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

Keylock Click

0

Keylock Click carries a processed sealed key lock mechanism that can be set in three different positions. The Click is designed to run on either 3.3V or 5V power supply.

[Learn More]

LTE Cat.1-US Click

0

LTE Cat.1-US Click is a Click board™ based on Thales Cinterion® ELS61 wireless module that delivers highly efficient Cat 1 LTE connectivity for M2M IoT solutions offering seamless fall back to 2G and 3G networks. The best in class solution enables M2M optimized speeds of 10Mbit/s download and 5Mbit/s uplink making it ideal for the vast number of M2M and industrial IoT applications that are not dependent on speed but that requires the longevity of LTE networks, while still providing 3G and 2G connectivity to ensure complete population and geographic coverage as LTE rolls out.

[Learn More]

MRAM 4 Click

0

MRAM 4 Click is a compact add-on board representing a magneto-resistive random-access memory solution. This board features the EM064LX, an industrial STT-MRAM persistent memory from Everspin Technologies. It is a 64Mb MRAM IC RAM and can achieve up to 200MHz as a single and double data rate (STR/DTR). The MRAM technology is analog to Flash technology with SRAM-compatible read/write timings (Persistent SRAM, P-SRAM), where data is always non-volatile. It also has a hardware write-protection feature and performs read and write operations with data retention for ten years and unlimited read, write, and erase operations for the supported life of the chip.

[Learn More]