TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141830 times)
  2. FAT32 Library (74956 times)
  3. Network Ethernet Library (59319 times)
  4. USB Device Library (49310 times)
  5. Network WiFi Library (45108 times)
  6. FT800 Library (44676 times)
  7. GSM click (31288 times)
  8. mikroSDK (30217 times)
  9. microSD click (27664 times)
  10. PID Library (27565 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Spectral Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.12

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 352 times

Not followed.

License: MIT license  

Spectral Click is a multispectral light sensing device, which uses the state-of-the-art sensor IC for a very accurate chromatic white color sensing.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Spectral Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Spectral Click" changes.

Do you want to report abuse regarding "Spectral Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Spectral Click

Spectral Click is a multispectral light sensing device, which uses the state-of-the-art sensor IC for a very accurate chromatic white color sensing.

spectral_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Mar 2020.
  • Type : UART type

Software Support

We provide a library for the Spectral Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Spectral Click driver.

Standard key functions :

  • spectral_cfg_setup Config Object Initialization function.

    void spectral_cfg_setup ( spectral_cfg_t *cfg ); 
  • spectral_init Initialization function.

    err_t spectral_init ( spectral_t *ctx, spectral_cfg_t *cfg );

Example key functions :

  • spectral_uart_read Generic read function.

    int32_t spectral_uart_read ( spectral_t *ctx, uint8_t *data_buf, uint16_t max_len );
  • spectral_send_command Send Command

    void spectral_send_command ( spectral_t *ctx, uint8_t *command );
  • spectral_get_data Read raw X, Y, Z and NIR data as well as two special internal registers D, & C.

    void spectral_get_data ( uint8_t *rsp, uint16_t *c_data );

Examples Description

This example reads and processes data from Spectral clicks.

The demo application is composed of two sections :

Application Init

Initializes the driver and configures the sensor.


void application_init ( void )
{
    log_cfg_t log_cfg;
    spectral_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    // Click initialization.
    spectral_cfg_setup( &cfg );
    SPECTRAL_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    spectral_init( &spectral, &cfg );

    spectral_module_reset( &spectral );
    Delay_ms ( 500 );

    log_printf( &logger, "Configuring the sensor...\r\n" );
    spectral_send_command( &spectral, SPECTRAL_CMD_AT );
    spectral_process( );
    spectral_send_command( &spectral, SPECTRAL_CMD_GAIN );
    spectral_process( );
    spectral_send_command( &spectral, SPECTRAL_CMD_MODE );
    spectral_process( );
    log_printf( &logger, "The sensor has been configured!\r\n" );
    Delay_ms ( 1000 );
}

Application Task

Reads the values of all 6 channels and parses it to the USB UART each second.


void application_task ( void )
{
    parser_application( );  
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Spectral

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

STSPIN820 Click

0

STSPIN820 Click is a stepper motor driver with the PWM current control, selectable microstepping up to 256 microsteps, and a wide voltage range. It is based on the STSPIN820, a stepper motor driver from STSPIN8 series. Designed to be a bullet-proof solution for the new wave of demanding industrial applications, it integrates two full-bridges with low ON resistance, the control logic, and a full set of protection features, in a small 4x4mm QFN package. Its output stage implements the PWM current control with the fixed OFF time. The device can be used with the step motor voltage ranging from 7V up to 45V, and current up to 1.5A per bridge.

[Learn More]

HDC1000 Click

0

HDC1000 Click is a humidity and temperature measurement Click board carrying the HDC1000 sensor.

[Learn More]

PAC1720 Click

0

PAC1720 Click is a compact add-on board that contains an energy monitoring solution. This board features the PAC1720, an I2C configurable dual high-side bidirectional current sensing monitor with precision voltage measurement capabilities from Microchip Technology. The PAC1720 measures the voltage developed across external sense resistors to represent the high-side current of a battery or voltage regulator.

[Learn More]