TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141829 times)
  2. FAT32 Library (74956 times)
  3. Network Ethernet Library (59318 times)
  4. USB Device Library (49309 times)
  5. Network WiFi Library (45108 times)
  6. FT800 Library (44676 times)
  7. GSM click (31287 times)
  8. mikroSDK (30217 times)
  9. microSD click (27664 times)
  10. PID Library (27565 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Spectral click

Rating:

5

Author: MIKROE

Last Updated: 2018-03-26

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Optical

Downloaded: 4042 times

Not followed.

License: MIT license  

Spectral click is a light multispectral sensing device, which uses the state-of-the-art sensor IC for a very accurate true-color sensing. Spectral click provides a direct reading of the XYZ color coordinates, consistent with the CIE 1931 2. standard color space.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Spectral click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Spectral click" changes.

Do you want to report abuse regarding "Spectral click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)

mikroSDK Library Blog

Spectral click

Spectral click

Native view of the Sprectral click board.

View full image
Spectral click

Spectral click

Front and back view of the Spectral click board.

View full image

Library Description

Library initializes and defines UART driver and functions witch offer a choice to providing direct XYZ color coordinates consistent with the CIE 1931.

  1. Standard Observer color coordinates. It also maps the XYZ coordinates to the x, y (Y) of the 2-dimensional color gamut and scales the coordinates to the CIE 1976 u’v’ coordinate system. The library provides accurate Correlated Color Temperature (CCT) measurements and provides color point deviation from the black body curve for white light color in the delta u’ v’ coordinate system. Check documentation for more details.


Key functions:

  • void spectral_getColor_Data(uint8_t *rsp, uint8_t *) - Reads calibrated X, Y, and Z color data.
  • void spectral_getXYsmall_Data(uint8_t *rsp, uint8_t *xyData) - Reads calibrated x and y for CIE 1931 color gamut.
  • uint8_t spectral_getLUX_Data(uint8_t *rsp) - Reads calibrated LUX value from the sensor.
  • uint8_t spectral_getCCT_Data(uint8_t *rsp) - Reads calibrated CCT value from the sensor.
  • void spectral_getUV_Data(uint8_t *rsp, uint16_t *uvData) - Reads calibrated u’, v’ and u, v for CIE 1976 color gamut.

Examples Description

The demo application is composed of three sections:

  • System Initialization - Initializes all necessary GPIO pins, UART used for
    the communcation with Spectral and UART used for infromation logging.
  • Application Initialization - Initializes driver, reset module and sends
    command for the default module configuration.
  • Application Task - (code snippet) - Sends the command to start reading data.
    Then logs to USBUART, six read values every 1 second.
void applicationTask()
{
 spectral_process();

 spectral_cmdSingle(&cmdData[0]);
 spectral_getData(&dataBuffer[0],&readData[0]);
 IntToStr(readData[0],text);
 mikrobus_logWrite( "-- X value:", _LOG_TEXT );
 mikrobus_logWrite( text, _LOG_LINE );

 IntToStr(readData[1],text);
 mikrobus_logWrite( "-- Y value:", _LOG_TEXT );
 mikrobus_logWrite( text, _LOG_LINE );

 IntToStr(readData[2],text);
 mikrobus_logWrite( "-- Z value:", _LOG_TEXT );
 mikrobus_logWrite( text, _LOG_LINE );

 IntToStr(readData[3],text);
 mikrobus_logWrite( "-- NIR value:", _LOG_TEXT );
 mikrobus_logWrite( text, _LOG_LINE );

 IntToStr(readData[4],text);
 mikrobus_logWrite( "-- D value:", _LOG_TEXT );
 mikrobus_logWrite( text, _LOG_LINE );

 IntToStr(readData[5],text);
 mikrobus_logWrite( "-- C value:", _LOG_TEXT );
 mikrobus_logWrite( text, _LOG_LINE );

 mikrobus_logWrite( "---------------------", _LOG_LINE );

 Delay_1sec();
}

Along with the demo application timer initialization functions are provided. Note that the timer is configured acording to the default develoment system and MCUs, changing the system or MCU may require an update of the timer init and timer ISR functions.

mikroE Libraries used in the example:

  • String
  • Conversions
  • UART

Additional notes and information

Depending on the development board you are using, you may need USB UART click,  USB UART 2 click or  RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

Thermo 20 click

5

Thermo 20 Click is a compact add-on board that provides an accurate temperature measurement. This board features the TSYS03, a miniature digital temperature sensor that comes up with factory calibrated, highly accurate temperature data from TE Connectivity Measurement Specialties.

[Learn More]

DIGI Isolator Click

0

DIGI Isolator Click is a compact add-on board that provides electrical isolation and signal conditioning for the serial peripheral interface and a UART interface. This board features two DCL540C01, high-speed, quad-channel digital isolators from Toshiba Semiconductor. Depending on the usage, this CMOS isolator can achieve data rates of up to 150Mbps, while withstanding up to 5kVrms voltage. DIGI Isolator Click is designed to isolate two additional IO pins besides SPI and UART interfaces.

[Learn More]

WiFi 11 click

5

WiFi 11 Click is a compact add-on board that contains a WiFi and Bluetooth module that has dual bands for WiFi communication. This board features the BW16, a single-chip low-power dual bands Wireless LAN (WLAN) and Bluetooth Low Energy SoC module from Shenzhen B&amp;amp;T Technologies Co., Ltd.

[Learn More]