TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (403 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140990 times)
  2. FAT32 Library (73524 times)
  3. Network Ethernet Library (58328 times)
  4. USB Device Library (48515 times)
  5. Network WiFi Library (44139 times)
  6. FT800 Library (43697 times)
  7. GSM click (30548 times)
  8. mikroSDK (29309 times)
  9. PID Library (27220 times)
  10. microSD click (26933 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Nano Power click

Rating:

5

Author: MIKROE

Last Updated: 2018-05-30

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Boost

Downloaded: 4680 times

Not followed.

License: MIT license  

Nano Power click is a boost (step-up) DC-DC converter click with extremely high efficiency and very low input voltage, aimed at the low power IoT market and battery-powered sensors and other devices.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Nano Power click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Nano Power click" changes.

Do you want to report abuse regarding "Nano Power click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

Nano Power click

Nano Power click

Native view of the Nano Power click board.

View full image
Nano Power click

Nano Power click

Front and back view of the Nano Power click board.

View full image

Library Description

Library initializes and defines GPIO driver and performs control of device voltage.
For more details check the documentation.

Key functions:

  • void nanopw_enableDevice( const uint8_t state ) - The function allows or blocks the input voltage (enables or disables device).

Example description

The application is composed of three sections:

  • System Initialization -  Initializes ENABLE (RST) pin as an output.
  • Application Initialization - Initializes the GPIO driver.
  • Application Task - (code snippet) - Turns the device on for 5 seconds and then turns the device off for 10 seconds. Afterward, the output voltage starts to fall.
    When the input voltage rises from 0.8V to 5.5V, the output voltage rises from 5.1V to 5.25V. When the input voltage is less than 0.8V, the output voltage is less than 5V.
void applicationTask()
{
 nanopw_enableDevice( _NANOPW_ENABLE_DEVICE );
 Delay_ms( 5000 );
 nanopw_enableDevice( _NANOPW_DISABLE_DEVICE );
 Delay_ms( 10000 );
}


Additional notes and information

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

2x4 RGB Click

0

2x4 RGB Click is a compact add-on board for dynamic and colorful lighting control. This board features an array of 2x4 RGB LEDs (WL-ICLED 1312121320437) from Würth Elektronik, featuring individual control of each red, green, and blue component via an integrated IC and pulse width modulation (PWM) technology. The board also includes an LSF0102 voltage translator, ensuring seamless operation with both 3.3V and 5V logic systems, and supports MIKROE’s innovative Click Snap feature for flexible installation options. With its precise color control and flexible design, 2x4 RGB Click is ideal for applications such as ambient lighting, displays, and visual indicators in various consumer electronics and industrial environments.

[Learn More]

PWM Click

0

PWM Click is a simple solution for controlling 16 PWM outputs through a single I2C interface. You can use it to control anything from a simple LED strip to a complex robot with a multitude of moving parts.

[Learn More]

Brushless 17 Click

0

Brushless 17 Click is a compact add-on board suitable for controlling brushless DC (BLDC) motors with any MCU. This board features the L6229Q, DMOS fully integrated three-phase BLDC motor driver with overcurrent protection from STMicroelectronics. This motor driver combines isolated DMOS power transistors with CMOS and bipolar circuits on the same chip, realized in BCD (Bipolar-CMOS-DMOS) multipower technology. It includes all the circuitry for a three-phase BLDC motor drive, including a three-phase DMOS bridge, a constant off-time PWM current controller, and the decoding logic for single-ended hall sensors that generate the required sequence for the power stage.

[Learn More]