TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141679 times)
  2. FAT32 Library (74728 times)
  3. Network Ethernet Library (59203 times)
  4. USB Device Library (49213 times)
  5. Network WiFi Library (44988 times)
  6. FT800 Library (44517 times)
  7. GSM click (31195 times)
  8. mikroSDK (30081 times)
  9. microSD click (27577 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Nano Power Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Boost

Downloaded: 380 times

Not followed.

License: MIT license  

Nano Power Click is a boost (step-up) DC-DC converter Click with extremely high efficiency and very low input voltage, aimed at the low power IoT market and battery-powered sensors and other devices.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Nano Power Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Nano Power Click" changes.

Do you want to report abuse regarding "Nano Power Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Nano Power Click

Nano Power Click is a boost (step-up) DC-DC converter Click with extremely high efficiency and very low input voltage, aimed at the low power IoT market and battery-powered sensors and other devices.

nanopower_click.png

Click Product page


Click library

  • Author : Petar Suknjaja
  • Date : Dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the NanoPower Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for NanoPower Click driver.

Standard key functions :

  • Config Object Initialization function.

    void nanopower_cfg_setup ( nanopower_cfg_t *cfg );

  • Initialization function.

    NANOPOWER_RETVAL nanopower_init ( nanopower_t ctx, nanopower_cfg_t cfg );

  • Click Default Configuration function.

    void nanopower_default_cfg ( nanopower_t *ctx );

Example key functions :

  • This function enables and disables the device.

    void nanopw_enable_device( nanopower_t *ctx, const uint8_t state )

Examples Description

This example enables the device.

The demo application is composed of two sections :

Application Init

Initializes GPIO driver.


void application_init ( void )
{
    log_cfg_t log_cfg;
    nanopower_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.

    nanopower_cfg_setup( &cfg );
    NANOPOWER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    nanopower_init( &nanopower, &cfg );
}

Application Task

Turns device on for 5 seconds and than turns device off for 10 seconds,then the output voltage starts to fall.


void application_task ( void )
{
    log_printf(&logger,"Device enabled\r\n");
    nanopw_enable_device( &nanopower, NANOPW_ENABLE_DEVICE );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    log_printf(&logger,"Device disabled\r\n");
    nanopw_enable_device( &nanopower, NANOPW_DISABLE_DEVICE );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.NanoPower

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Barometer Click

0

This application measures temperature and pressure data.

[Learn More]

Touchpad 3 Click

0

Touchpad 3 Click is a compact add-on board that allows users to easily integrate projected capacitive touch into their applications. This board features the MTCH6301, a turnkey capacitive touch controller that makes it easy for users to use popular multitouch and gesture interfaces from Microchip. This controller’s sophisticated combination of Self and Mutual capacitive scanning for XY touchscreens and touchpads enables several features, including single and dual-touch drawing, the reporting of 11 single-finger gestures, and the detection of up to 10 touches. This Click board™ is suitable for human-machine interfaces, keypad or scrolling functions, single-finger gesture-based interfaces, and more.

[Learn More]

Altitude 5 Click

0

Altitude 5 Click is a compact add-on board allowing high-resolution barometric pressure measurement. This board features the KP236, an analog barometric air pressure sensor based on a capacitive principle from Infineon Technologies. The KP236 is primarily developed for measuring barometric air pressure but can also be used in other application fields. It is surface micro-machined with a monolithic integrated signal conditioning circuit implemented in BiCMOS technology. The calibrated transfer function converts pressure into an analog output signal in a range of 40kPa to 115kPa. However, the choice of signal processing is up to the user; more precisely, the user can process the output signal in analog or digital form. The high accuracy and the high sensitivity of the KP236 make this Click board™ suitable for advanced automotive applications and industrial and consumer applications.

[Learn More]