TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141555 times)
  2. FAT32 Library (74493 times)
  3. Network Ethernet Library (59030 times)
  4. USB Device Library (49026 times)
  5. Network WiFi Library (44795 times)
  6. FT800 Library (44371 times)
  7. GSM click (31048 times)
  8. mikroSDK (29915 times)
  9. microSD click (27482 times)
  10. PID Library (27473 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Nano Power Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Boost

Downloaded: 358 times

Not followed.

License: MIT license  

Nano Power Click is a boost (step-up) DC-DC converter Click with extremely high efficiency and very low input voltage, aimed at the low power IoT market and battery-powered sensors and other devices.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Nano Power Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Nano Power Click" changes.

Do you want to report abuse regarding "Nano Power Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Nano Power Click

Nano Power Click is a boost (step-up) DC-DC converter Click with extremely high efficiency and very low input voltage, aimed at the low power IoT market and battery-powered sensors and other devices.

nanopower_click.png

Click Product page


Click library

  • Author : Petar Suknjaja
  • Date : Dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the NanoPower Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for NanoPower Click driver.

Standard key functions :

  • Config Object Initialization function.

    void nanopower_cfg_setup ( nanopower_cfg_t *cfg );

  • Initialization function.

    NANOPOWER_RETVAL nanopower_init ( nanopower_t ctx, nanopower_cfg_t cfg );

  • Click Default Configuration function.

    void nanopower_default_cfg ( nanopower_t *ctx );

Example key functions :

  • This function enables and disables the device.

    void nanopw_enable_device( nanopower_t *ctx, const uint8_t state )

Examples Description

This example enables the device.

The demo application is composed of two sections :

Application Init

Initializes GPIO driver.


void application_init ( void )
{
    log_cfg_t log_cfg;
    nanopower_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.

    nanopower_cfg_setup( &cfg );
    NANOPOWER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    nanopower_init( &nanopower, &cfg );
}

Application Task

Turns device on for 5 seconds and than turns device off for 10 seconds,then the output voltage starts to fall.


void application_task ( void )
{
    log_printf(&logger,"Device enabled\r\n");
    nanopw_enable_device( &nanopower, NANOPW_ENABLE_DEVICE );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    log_printf(&logger,"Device disabled\r\n");
    nanopw_enable_device( &nanopower, NANOPW_DISABLE_DEVICE );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.NanoPower

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Buggy example

1

This example demonstrates wireless Buggy control, using clicker2 for STM32/PIC32/PIC18FJ/FT900, BLE-P click board and Android smart phone.

[Learn More]

Clock Gen 4 Click

0

Clock Gen 4 Click is a compact add-on board that contains both a clock generator and a multiplier/jitter reduced clock frequency synthesizer. This board features the CS2200-CP, an analog PLL architecture comprised of a Delta-Sigma fractional-N frequency synthesizer from Cirrus Logic. This clocking device utilizes a programmable phase lock loop and allows frequency synthesis and clock generation from a stable reference clock. It generates a low-jitter PLL clock from an external crystal, supports both I²C and SPI for full software control, and also has configurable auxiliary clock output. This Click board™ is suitable for MCU clock source, or in applications like digital effects processors, digital mixing consoles, and many more.

[Learn More]

RTC 14 Click

0

RTC 14 Click is a compact add-on board that measures the passage of time. This board features the ISL1221, a low-power RTC with battery-backed SRAM and event detection from Renesas. The ISL1221 tracks time with separate registers for hours, minutes, and seconds, operating in normal and battery mode. It also can timestamp an event by either issuing an output signal, containing the second, minute, hour, date, month, and year that the triggering event occurred, or by stopping the RTC registers from advancing at the moment the event occurs. The calendar feature is exceptionally accurate through 2099, with automatic leap year correction.

[Learn More]