TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139254 times)
  2. FAT32 Library (71751 times)
  3. Network Ethernet Library (57122 times)
  4. USB Device Library (47430 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42403 times)
  7. GSM click (29835 times)
  8. mikroSDK (28078 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Pedometer click

Rating:

5

Author: MIKROE

Last Updated: 2019-06-18

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Motion

Downloaded: 2852 times

Not followed.

License: MIT license  

Pedometer Click is designed to sense movement, more precisely, to sense and count steps taken by its user. It is equipped with the STP201M module, a 3D pedometer module with an IC chipset, which includes a precise G-sensor and MCU.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Pedometer click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Pedometer click" changes.

Do you want to report abuse regarding "Pedometer click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

Pedometer click

Pedometer click

Native view of the Pedometer click board.

View full image
Pedometer click

Pedometer click

Front and back view of the Pedometer click board.

View full image

Library Description

The library contains all the necessary functions for detecting and reading the steps.

Key functions:

  • uint8_t pedometer_process() - Pedometer process.
  • uint32_t pedometer_getStepCounter() - Functions for get step counter.
  • void pedometer_resetStepCounter(uint32_t newCnt) - Functions for reset Step counter.

Examples description

The application is composed of three sections :

  • System Initialization - Sets INT pin as INPUT for detection STEP .
  • Application Initialization - Initializes driver init and sets step counter on 0 .
  • Application Task - It checks if a new step is detected, if detected new step - reads the current number of steps made and logs data to the USBUART.
void applicationTask()
{
    uint8_t newStep;
    uint32_t stepCounter;
    char demoText[ 50 ];
    
    newStep = pedometer_process();

    if(newStep == PEDOMETER_NEW_STEP_DETECTED)
    {
        stepCounter = pedometer_getStepCounter();
        LongWordToStr(stepCounter, demoText);
        mikrobus_logWrite(" Step Counter : ", _LOG_TEXT);
        mikrobus_logWrite(demoText, _LOG_LINE);
        
        mikrobus_logWrite("---------------------------", _LOG_LINE);
        Delay_ms( 50 );
    }
}

Other mikroE Libraries used in the example:

  • Conversions Library
  • UART Library

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

GNSS ZOE click

5

Determine your current position with GNSS ZOE Click. It carries the ZOE-M8Q GNSS receiver module from u-blox. GNSS ZOE click is designed to run on a 3.3V power supply.

[Learn More]

Radar Click

0

Radar Click is a compact add-on board that alerts you to the presence of an intruder via interpreting the infrared radiation that emanates from their body. This board features the MM5D91-00, a presence detection sensor module that integrates 60GHz mmWave technology that counts the number of people entering or exiting an entrance from Jorjin Technologies Inc. It includes the ARM Cortex-M4F based processor system, 1Tx, 3Rx antenna, and integrated regulator, alongside azimuth and elevation field of view of ±45° and ±40°. Its detection goes up to 10m for macro and 5m for micro motion with environmental-factors immunity such as temperature, wind, sunlight, and dust. This Click board™ is suitable for various presence sensing applications, from office and home to commercial buildings and more.

[Learn More]

Wheatstone Click

0

Wheatstone Click is a measurement Click board™ which utilizes a Wheatstone bridge circuit onboard, in order to precisely measure the resistance of an external element. Besides the wheatstone bridge circuit, this Click board™ also utilizes MAX4208 – an ultra-low offset/drift, precision instrumentation amplifier, from Maxim Integrated.

[Learn More]