TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141555 times)
  2. FAT32 Library (74493 times)
  3. Network Ethernet Library (59030 times)
  4. USB Device Library (49026 times)
  5. Network WiFi Library (44795 times)
  6. FT800 Library (44371 times)
  7. GSM click (31048 times)
  8. mikroSDK (29915 times)
  9. microSD click (27482 times)
  10. PID Library (27473 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Pedometer click

Rating:

5

Author: MIKROE

Last Updated: 2019-06-18

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Motion

Downloaded: 3473 times

Not followed.

License: MIT license  

Pedometer Click is designed to sense movement, more precisely, to sense and count steps taken by its user. It is equipped with the STP201M module, a 3D pedometer module with an IC chipset, which includes a precise G-sensor and MCU.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Pedometer click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Pedometer click" changes.

Do you want to report abuse regarding "Pedometer click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

Pedometer click

Pedometer click

Native view of the Pedometer click board.

View full image
Pedometer click

Pedometer click

Front and back view of the Pedometer click board.

View full image

Library Description

The library contains all the necessary functions for detecting and reading the steps.

Key functions:

  • uint8_t pedometer_process() - Pedometer process.
  • uint32_t pedometer_getStepCounter() - Functions for get step counter.
  • void pedometer_resetStepCounter(uint32_t newCnt) - Functions for reset Step counter.

Examples description

The application is composed of three sections :

  • System Initialization - Sets INT pin as INPUT for detection STEP .
  • Application Initialization - Initializes driver init and sets step counter on 0 .
  • Application Task - It checks if a new step is detected, if detected new step - reads the current number of steps made and logs data to the USBUART.
void applicationTask()
{
    uint8_t newStep;
    uint32_t stepCounter;
    char demoText[ 50 ];
    
    newStep = pedometer_process();

    if(newStep == PEDOMETER_NEW_STEP_DETECTED)
    {
        stepCounter = pedometer_getStepCounter();
        LongWordToStr(stepCounter, demoText);
        mikrobus_logWrite(" Step Counter : ", _LOG_TEXT);
        mikrobus_logWrite(demoText, _LOG_LINE);
        
        mikrobus_logWrite("---------------------------", _LOG_LINE);
        Delay_ms( 50 );
    }
}

Other mikroE Libraries used in the example:

  • Conversions Library
  • UART Library

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

Vibro Motor 4 Click

0

Vibro Motor 4 Click is a compact add-on board that makes an ideal solution for adding simple haptic feedback in any design. This board features the G1040003D, a coin-sized linear resonant actuator (LRA) that generates vibration/haptic feedback from Jinlong Machinery & Electronics, Inc. Driven by a flexible Haptic/Vibra driver, the DRV2605, G1040003D vibrates in the Z-axis, which is perpendicular to the face of the vibration motor. It draws a maximum of 170mA while producing the highest G force/vibration energy of 2 GRMS. This Click board™ makes an excellent choice for devices with limited battery capacity and for users who require crisp haptic feedback and low power consumption.

[Learn More]

Conversions

11

Additional Conversion library, contains routines for converting numerals to binary string representation and for converting to binary Gray code.

[Learn More]

Buzzer Click

0

Buzzer Click is a compact add-on board for generating sound signals in various electronic applications. This board features the CPT-7502-65-SMT-TR, a piezoelectric buzzer transducer from CUI Devices, known for its efficient sound output and compact surface-mount design. The buzzer offers a sound pressure level of 65dB and consumes only 1mA of current, making it ideal for battery-powered devices. The board also features the MIKROE 'Click Snap' function, allowing for flexible installation and autonomous operation.

[Learn More]