TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141317 times)
  2. FAT32 Library (74154 times)
  3. Network Ethernet Library (58737 times)
  4. USB Device Library (48834 times)
  5. Network WiFi Library (44544 times)
  6. FT800 Library (44117 times)
  7. GSM click (30857 times)
  8. mikroSDK (29699 times)
  9. PID Library (27359 times)
  10. microSD click (27273 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Secure 6 click

Rating:

0

Author: MIKROE

Last Updated: 2019-08-15

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Encryption

Downloaded: 486 times

Not followed.

License: MIT license  

Secure 6 Click includes the ATSHA204A, a secure CryptoAuthentication device from Microchip, which is equipped with an EEPROM array which can be used for storing of up to 16 keys, certificates, consumption logging, security configurations and other types of secure data.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Secure 6 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Secure 6 click" changes.

Do you want to report abuse regarding "Secure 6 click".

  • Information
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

Secure 6 Click

Secure 6 Click

Native view of the Secure 6 Click board.

View full image
Secure 6 Click

Secure 6 Click

Front and back view of the Secure 6 Click board.

View full image

Library Description

The library demonstrates the operation of the software single wire interface implementation.

Key functions:

  • int8_t secureswi_init(T_SECURESWI_DIRSET inSet, T_SECURESWI_DIRSET outSet) - Initialize the SWI interface and pass the pin direction setting functions.
  • void secureswi_sendBytes(uint8_t len,uint8_t *stBuf) - Encode data buffer and send the data to the SWI bus.
  • void secureswi_receiveBytes(uint8_t len,uint8_t *stBuf) - Receive and decode data from the SWI bus.

Examples description

The application is composed of three sections :

  • System Initialization - Initialize the GPIO sturcture and configure the serial port for logging data.
  • Application Initialization - Initialize the driver and configure swi for communication.
  • Application Task - Data is read from the secure chip. If the readout is successful the data is then printed on the serial port in the hex format.
void applicationTask()
{
     uint8_t bufferOut[128];

     cfg_atsha204a_swi_default.iface_type  = ATCA_SWI_IFACE;
     cfg_atsha204a_swi_default.devtype     = ATSHA204A;
     cfg_atsha204a_swi_default.atcaswi.bus = 1;
     cfg_atsha204a_swi_default.wake_delay  = 2560;
     cfg_atsha204a_swi_default.rx_retries  = 10;

     atcab_init(&cfg_atsha204a_swi_default);

     mikrobus_logWrite("Starting test",_LOG_LINE);

     memset(bufferOut,0,127);

     if (atcab_read_serial_number(bufferOut) == ATCA_SUCCESS)
     {
         mikrobus_logWrite("rn Serial number: ",_LOG_LINE);
         secureswi_printHex(bufferOut,9);
     }
     else
     {
         mikrobus_logWrite("rn Reading serial number failed...",_LOG_LINE);
         secureswi_printHex(bufferOut,sizeof(bufferOut));
     }

     Delay_ms (1500);
     memset (bufferOut, 0x00, 128);
     if (atcab_read_config_zone(bufferOut) == ATCA_SUCCESS)
     {
        mikrobus_logWrite("rnrn First 32 bytes of device configuration: ",_LOG_LINE);
        secureswi_printHex(bufferOut,32);
     }
     else
     {
        mikrobus_logWrite("rnrn Reading config zone failed...",_LOG_LINE);
        secureswi_printHex(bufferOut,sizeof(bufferOut));
     }

     while(1)
     {

     }
}

Other mikroE Libraries used in the example:

  • Conversions
  • C_String
  • UART

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

TempHum 25 Click

0

Temp&Hum 25 Click is a compact add-on board designed for precise temperature and humidity monitoring. This board features the SHT33-DIS-B2.5KS, a high-reliability, third-generation relative humidity and temperature sensor from Sensirion. This sensor offers exceptional accuracy and reliability, with a range of 0-100% RH and -40 to +125°C, and features ISO17025-certified calibration, CMOSens® technology, and NIST-traceability. The board supports the new Click Snap feature, allowing easy detachment of the sensor area for flexible use.

[Learn More]

Signal Relay click

0

Signal Relay click can be used for ON/OFF control in various devices. It carries four ultra-small GV5-1 PCB relays from Omron and runs on a 5V power supply. Signal Relay click communicates with the target MCU over the following mikroBUS pins: AN, RST, CS and PWM.

[Learn More]

Mic Click

0

Mic Click carries the SPQ0410HR5H-B surface mount silicon microphone with maximum RF protection. The Click is designed to run on a 3.3V power supply. It communicates with the target microcontroller over the AN pin on the mikroBUS™ line.

[Learn More]