TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140168 times)
  2. FAT32 Library (72622 times)
  3. Network Ethernet Library (57644 times)
  4. USB Device Library (47957 times)
  5. Network WiFi Library (43554 times)
  6. FT800 Library (42942 times)
  7. GSM click (30140 times)
  8. mikroSDK (28670 times)
  9. PID Library (27057 times)
  10. microSD click (26552 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Dual EE click

Rating:

5

Author: MIKROE

Last Updated: 2019-09-23

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: EEPROM

Downloaded: 3204 times

Not followed.

License: MIT license  

Dual EE Click contains two AT24CM02 EEPROM ICs onboard which gives total of 4MB of memory. Each memory IC can be addressed through the I2C interface with the transfer speed of 400KHz.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Dual EE click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Dual EE click" changes.

Do you want to report abuse regarding "Dual EE click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

Dual EE click

Dual EE click

Native view of the Dual EE click board.

View full image
Dual EE click

Dual EE click

Front and back view of the Dual EE click board.

View full image

Library Description

The library includes functions to write data to memory and read data from memory.

Key functions:

  • uint8_t dualee_read(uint32_t regAddress, uint8_t *dataBuff, uint8_t nBytes) - Reading data from memory
  • uint8_t dualee_write(uint32_t regAddress, uint8_t *dataBuff, uint8_t nBytes) - Writing data to memory

Examples description

The application is composed of three sections :

  • System Initialization - Initializes I2C module
  • Application Initialization - Initializes driver init
  • Application Task - Reads your command and then execute i
  • Commands : '+' - increment current address '-' - decrement current address 'r' - read from current address 'w' - write from current address and then read it
void applicationTask()
{
    uint8_t dataReady_;
    uint16_t addressTemp;
    char receivedData_;
    char addressStr[10];

    
    if (inputDone == 1)
    {
        mikrobus_logWrite( "", _LOG_LINE);
        mikrobus_logWrite("Current page address is 0x", _LOG_TEXT);
        
        addressTemp = (pageAddress >> 16) & 0x00FF;
        IntToHex(addressTemp, addressStr);
        mikrobus_logWrite( addressStr, _LOG_TEXT);

        IntToHex(pageAddress, addressStr);
        mikrobus_logWrite( addressStr, _LOG_LINE);
        
        mikrobus_logWrite( "", _LOG_LINE);
        mikrobus_logWrite( "Enter '+' if you want to increment current address or '-' if you want to decrement current address", _LOG_LINE);
        mikrobus_logWrite( "Enter 'w' write text in current address or 'r' to read from current address:", _LOG_LINE);
        mikrobus_logWrite( "", _LOG_LINE);
        inputDone = 0;
    }

    dataReady_ = UART_Rdy_Ptr( );

    if (dataReady_ != 0)
    {
        receivedData_ = UART_Rd_Ptr( );

        switch (receivedData_)
        {
            case '+' :
            {
                if(pageAddress < _DUALEE_ADDRESS_END)
                {
                    pageAddress ++;
                }
                else
                {
                    mikrobus_logWrite( "Can't increment address, this is last address!", _LOG_LINE);
                }
                inputDone = 1;
                break;
            }
            case '-' :
            {
                if(pageAddress > _DUALEE_ADDRESS_START)
                {
                    pageAddress --;
                }
                else
                {
                    mikrobus_logWrite( "Can't decrement address, this is first address!", _LOG_LINE);
                }
                inputDone = 1;
                break;
            }
            case 'w' :
            {
                dualee_textWrite();
                inputDone = 1;
                break;
            }
            case 'r' :
            {
                dualee_textRead();
                inputDone = 1;
                break;
            }
        }
    }

    Delay_ms(1000);
}

Additional Functions :

  • void dualee_textRead() - Reads current address and logs that data to USBUART
  • void dualee_textWrite() - Writes on current address, reads that and then logs that data to USBUART

Note :

  • When you want to stop writing, you need to send '|'
  • After you read or write something you should set slight delay

Other mikroE Libraries used in the example:

  • I2C
  • Conversions

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

Surface Temp click

5

The Surface Temp Click is a Click board equipped with the ADT7420, high accuracy digital temperature sensor offering breakthrough performance over a wide industrial range. Surface Temp Click is supported by a mikroSDK compliant library, which includes functions that simplify software development.

[Learn More]

A5000 Plug n Trust Click

0

A5000 Plug&Trust Click is a compact add-on board representing a ready-to-use secure IoT authenticator. This board features the A5000, an Edge Lock® Secure Authenticator from NXP Semiconductors. The A5000 provides a root of trust at the IC level, giving an IoT authentication system state-of-the-art security capability. It allows for securely storing and provisioning credentials and performing cryptographic operations for security-critical communication and authentication functions. It has an independent Common Criteria EAL 6+ security certification up to OS level and supports ECC asymmetric cryptographic and AES/3DES symmetric algorithms.

[Learn More]

Magnetic Rotary 4 Click

0

Magnetic Rotary 4 Click is a compact add-on board for accurate magnet-position sensing. This board features the AS5047D, an SPI-configurable high-resolution rotary position sensor for fast absolute angle measurement over a full 360-degree range from ams AG. The AS5047D is equipped with revolutionary integrated dynamic angle error compensation (DAEC™) with almost 0 latency and offers a robust design that suppresses the influence of any homogenous external stray magnetic field. It also comes with an onboard header reserved for incremental and commutation signals of their respective A/B/I and U/V/W signals alongside embedded self-diagnostics, including magnetic field strength, lost magnet, and other related diagnostic features.

[Learn More]