TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141481 times)
  2. FAT32 Library (74339 times)
  3. Network Ethernet Library (58869 times)
  4. USB Device Library (48921 times)
  5. Network WiFi Library (44698 times)
  6. FT800 Library (44229 times)
  7. GSM click (30938 times)
  8. mikroSDK (29817 times)
  9. PID Library (27423 times)
  10. microSD click (27375 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Dual EE click

Rating:

5

Author: MIKROE

Last Updated: 2019-09-23

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: EEPROM

Downloaded: 3684 times

Not followed.

License: MIT license  

Dual EE Click contains two AT24CM02 EEPROM ICs onboard which gives total of 4MB of memory. Each memory IC can be addressed through the I2C interface with the transfer speed of 400KHz.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Dual EE click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Dual EE click" changes.

Do you want to report abuse regarding "Dual EE click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

Dual EE click

Dual EE click

Native view of the Dual EE click board.

View full image
Dual EE click

Dual EE click

Front and back view of the Dual EE click board.

View full image

Library Description

The library includes functions to write data to memory and read data from memory.

Key functions:

  • uint8_t dualee_read(uint32_t regAddress, uint8_t *dataBuff, uint8_t nBytes) - Reading data from memory
  • uint8_t dualee_write(uint32_t regAddress, uint8_t *dataBuff, uint8_t nBytes) - Writing data to memory

Examples description

The application is composed of three sections :

  • System Initialization - Initializes I2C module
  • Application Initialization - Initializes driver init
  • Application Task - Reads your command and then execute i
  • Commands : '+' - increment current address '-' - decrement current address 'r' - read from current address 'w' - write from current address and then read it
void applicationTask()
{
    uint8_t dataReady_;
    uint16_t addressTemp;
    char receivedData_;
    char addressStr[10];

    
    if (inputDone == 1)
    {
        mikrobus_logWrite( "", _LOG_LINE);
        mikrobus_logWrite("Current page address is 0x", _LOG_TEXT);
        
        addressTemp = (pageAddress >> 16) & 0x00FF;
        IntToHex(addressTemp, addressStr);
        mikrobus_logWrite( addressStr, _LOG_TEXT);

        IntToHex(pageAddress, addressStr);
        mikrobus_logWrite( addressStr, _LOG_LINE);
        
        mikrobus_logWrite( "", _LOG_LINE);
        mikrobus_logWrite( "Enter '+' if you want to increment current address or '-' if you want to decrement current address", _LOG_LINE);
        mikrobus_logWrite( "Enter 'w' write text in current address or 'r' to read from current address:", _LOG_LINE);
        mikrobus_logWrite( "", _LOG_LINE);
        inputDone = 0;
    }

    dataReady_ = UART_Rdy_Ptr( );

    if (dataReady_ != 0)
    {
        receivedData_ = UART_Rd_Ptr( );

        switch (receivedData_)
        {
            case '+' :
            {
                if(pageAddress < _DUALEE_ADDRESS_END)
                {
                    pageAddress ++;
                }
                else
                {
                    mikrobus_logWrite( "Can't increment address, this is last address!", _LOG_LINE);
                }
                inputDone = 1;
                break;
            }
            case '-' :
            {
                if(pageAddress > _DUALEE_ADDRESS_START)
                {
                    pageAddress --;
                }
                else
                {
                    mikrobus_logWrite( "Can't decrement address, this is first address!", _LOG_LINE);
                }
                inputDone = 1;
                break;
            }
            case 'w' :
            {
                dualee_textWrite();
                inputDone = 1;
                break;
            }
            case 'r' :
            {
                dualee_textRead();
                inputDone = 1;
                break;
            }
        }
    }

    Delay_ms(1000);
}

Additional Functions :

  • void dualee_textRead() - Reads current address and logs that data to USBUART
  • void dualee_textWrite() - Writes on current address, reads that and then logs that data to USBUART

Note :

  • When you want to stop writing, you need to send '|'
  • After you read or write something you should set slight delay

Other mikroE Libraries used in the example:

  • I2C
  • Conversions

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

Thermo 13 click

5

Thermo 13 Click is a Click board equipped with the sensor IC, which can digitize temperature measurements between -30°C and +95°C so that the temperature measurement data can be processed by the host MCU.

[Learn More]

Motion 3 Click

0

Motion 3 Click is a Click board™ based on EKMC1606112, PIR motion sensor from Panasonic Corporation that's used as human motion detector. Also featured on Motion 3 Click bord is TLP241A photorelay from Toshiba that is used to provide a reinforced galvanic isolation for the external signals used to drive some external high power electronic equipment when motion is detected. It's allowing up to 40V between the SSR contacts in OFF state, and currents up to 2A while in ON state, thanks to a very low ON-state resistance. Motion 3 Click board™ is supported by a mikroSDK compliant library, which includes functions that simplify software development. This Click board™ comes as a fully tested product, ready to be used on a system equipped with the mikroBUS™ socket.

[Learn More]

Motion 2 click

5

Motion 2 Click is a based on EKMC1607112, PIR motion sensor from Panasonic Corporation that's used as human motion detector. Also it is featured with TLP241A photorelay from Toshiba that is used to provide a reinforced galvanic isolation for the external signals used to drive some external high power electronic equipment when motion is detected.

[Learn More]