TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142085 times)
  2. FAT32 Library (75318 times)
  3. Network Ethernet Library (59508 times)
  4. USB Device Library (49527 times)
  5. Network WiFi Library (45295 times)
  6. FT800 Library (44935 times)
  7. GSM click (31448 times)
  8. mikroSDK (30472 times)
  9. microSD click (27804 times)
  10. PID Library (27625 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

FAN 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 526 times

Not followed.

License: MIT license  

Fan 4 Click is a very compact, two-wire fan driver. It utilizes an integrated 5V, DC, brushless-motor driver chip.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "FAN 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "FAN 4 Click" changes.

Do you want to report abuse regarding "FAN 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


FAN 4 Click

Fan 4 Click is a very compact, two-wire fan driver. It utilizes an integrated 5V, DC, brushless-motor driver chip.

fan4_click.png

Click Product page


Click library

  • Author : Katarina Perendic
  • Date : nov 2019.
  • Type : I2C type

Software Support

We provide a library for the Fan4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Fan4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void fan4_cfg_setup ( fan4_cfg_t *cfg );

  • Initialization function.

    FAN4_RETVAL fan4_init ( fan4_t ctx, fan4_cfg_t cfg );

  • Click Default Configuration function.

    void fan4_default_cfg ( fan4_t *ctx );

Example key functions :

  • Check diagnostic.

    uint8_t fan4_check_diagnostic ( fan4_t *ctx );

  • Set output voltage

    FAN4_RETVAL fan4_set_output ( fan4_t *ctx, uint16_t output_volt, uint8_t boost_start_timer );

Examples Description

Demo application shows basic use of Fan 4 Click.

The demo application is composed of two sections :

Application Init

Configuring clicks and log objects. Settings the Click in the default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;
    fan4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    fan4_cfg_setup( &cfg );
    FAN4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    fan4_init( &fan4, &cfg );

    fan4_default_cfg( &fan4 );
}

Application Task

Increases the output voltage every 500 ms until it reaches the maximum fan voltage. Prints current voltase data on usbuart.

void application_task ( void )
{
    uint16_t voltage;

    //  Task implementation.

    voltage = FAN4_MIN_VOLT_SCALE;

    while ( voltage <= FAN4_MAX_VOLT_SCALE )
    {
        voltage += ( FAN4_DAC_LSB * 4 );
        log_info( &logger, "** Voltage is %d mV", voltage );

        fan4_set_output( &fan4, voltage, FAN4_BOOST_START_TIMER_DIS );
        Delay_ms ( 500 );
    }
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Fan4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

ECG 5 Click

0

ECG 5 Click can be used for the development of ECG and Heart-Rate (HR) applications. The Click board™ features the AD8232, an integrated bio-signal front end. This IC has many features necessary for providing accurate ECG measurements, including very high common-mode rejection ratio, high gain with DC blocking capability, adjustable high-pass and low-pass filters, integrated right leg drive (RLD), etc.

[Learn More]

Expand 3 click

6

EXPAND 3 click is an accessory board in mikroBUS form factor. It includes an 8-channel programmable I/O expander DS2408 that communicates with the target board MCU through a 1-Wire interface (15.3 kbps or 100kbps).

[Learn More]

DC Motor 26 Click

0

DC Motor 26 Click is a compact add-on board with a brushed DC motor driver. This board features the TB9053FTG, a PWM-type, dual-channel, H-bridge, brushed DC motor driver from Toshiba Semiconductor. The TB9053FTG is rated for an operating voltage range from 4.5V to 28V, with the motor controlled directly through a PWM signal or SPI serial interface. In addition, this driver allows a dual configuration with two motors with 5A current ratings per channel or one 10A channel drive in a Parallel mode of operation. It also has complete diagnostic and protection capabilities supporting robust and reliable operation.

[Learn More]