TOP Contributors

  1. MIKROE (2654 codes)
  2. Alcides Ramos (352 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136749 times)
  2. FAT32 Library (69954 times)
  3. Network Ethernet Library (55942 times)
  4. USB Device Library (46267 times)
  5. Network WiFi Library (41888 times)
  6. FT800 Library (41181 times)
  7. GSM click (28986 times)
  8. PID Library (26414 times)
  9. mikroSDK (26367 times)
  10. microSD click (25377 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

FAN 4 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 126 times

Not followed.

License: MIT license  

Fan 4 click is a very compact, two-wire fan driver. It utilizes an integrated 5V, DC, brushless-motor driver chip.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "FAN 4 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "FAN 4 click" changes.

Do you want to report abuse regarding "FAN 4 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


FAN 4 click

Fan 4 click is a very compact, two-wire fan driver. It utilizes an integrated 5V, DC, brushless-motor driver chip.

fan4_click.png

click Product page


Click library

  • Author : Katarina Perendic
  • Date : nov 2019.
  • Type : I2C type

Software Support

We provide a library for the Fan4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Fan4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void fan4_cfg_setup ( fan4_cfg_t *cfg );

  • Initialization function.

    FAN4_RETVAL fan4_init ( fan4_t ctx, fan4_cfg_t cfg );

  • Click Default Configuration function.

    void fan4_default_cfg ( fan4_t *ctx );

Example key functions :

  • Check diagnostic.

    uint8_t fan4_check_diagnostic ( fan4_t *ctx );

  • Set output voltage

    FAN4_RETVAL fan4_set_output ( fan4_t *ctx, uint16_t output_volt, uint8_t boost_start_timer );

Examples Description

Demo application shows basic use of Fan 4 click.

The demo application is composed of two sections :

Application Init

Configuring clicks and log objects. Settings the click in the default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;
    fan4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    fan4_cfg_setup( &cfg );
    FAN4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    fan4_init( &fan4, &cfg );

    fan4_default_cfg( &fan4 );
}

Application Task

Increases the output voltage every 500 ms until it reaches the maximum fan voltage. Prints current voltase data on usbuart.

void application_task ( void )
{
    uint16_t voltage;

    //  Task implementation.

    voltage = FAN4_MIN_VOLT_SCALE;

    while ( voltage <= FAN4_MAX_VOLT_SCALE )
    {
        voltage += ( FAN4_DAC_LSB * 4 );
        log_info( &logger, "** Voltage is %d mV", voltage );

        fan4_set_output( &fan4, voltage, FAN4_BOOST_START_TIMER_DIS );
        Delay_ms ( 500 );
    }
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Fan4

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Temp Probe click

5

Temp Probe Click is a compact add-on board used as thermocouple temperature monitoring system. This board features the LTC2986, a high accuracy digital temperature measurement system used to directly digitize thermocouples with 0.1°C accuracy and 0.001°C resolution from Analog Devices.

[Learn More]

DC Motor 20 click

0

DC Motor 20 Click is a compact add-on board that contains a brushed DC motor driver. This board features the TC78H651AFNG, a dual H-bridge driver for one or two DC brushed motors, which incorporates DMOS with low ON resistance in output transistors from Toshiba Semiconductor.

[Learn More]

Barometer 4 click

0

Barometer 4 Click is a compact add-on board used to measure air pressure in a specific environment. This board features the ICP-10111, a high accuracy low power barometric and temperature sensor from TDK InvenSense. The ICP-10111 is based on MEMS capacitive technology providing ultra-low noise at the lowest power, enabling industry-leading relative accuracy, sensor throughput, and temperature stability. It comes with a configurable host interface that supports I2C serial communication and measures pressure in a range from 30kPa up to 110kPa with an accuracy of ±1Pa over a wide operating temperature range. This Click board™ is suited for various pressure-based applications, especially when low power consumption is required, home appliances such as airflow control in HVAC, water level detection, vertical velocity monitoring, weather forecasting, and many more.

[Learn More]