TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141209 times)
  2. FAT32 Library (73995 times)
  3. Network Ethernet Library (58642 times)
  4. USB Device Library (48764 times)
  5. Network WiFi Library (44458 times)
  6. FT800 Library (44033 times)
  7. GSM click (30784 times)
  8. mikroSDK (29513 times)
  9. PID Library (27339 times)
  10. microSD click (27188 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Relay Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.19

mikroSDK Library: 2.0.0.0

Category: Relay

Downloaded: 612 times

Not followed.

License: MIT license  

Relay Click is a dual relay Click board, which can be operated by the host MCU. This Click board offers an elegant and easy solution for controlling a wide range of high power applications.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Relay Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Relay Click" changes.

Do you want to report abuse regarding "Relay Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Relay Click

Relay Click is a dual relay Click board, which can be operated by the host MCU. This Click board offers an elegant and easy solution for controlling a wide range of high power applications.

relay_click.png

Click Product page


Click library

  • Author : Katarina Perendic
  • Date : okt 2019.
  • Type : GPIO type

Software Support

We provide a library for the Relay Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Relay Click driver.

Standard key functions :

  • Config Object Initialization function.

    void relay_cfg_setup ( relay_cfg_t *cfg );

  • Initialization function.

    RELAY_RETVAL relay_init ( relay_t ctx, relay_cfg_t cfg );

  • Click Default Configuration function.

    void relay_default_cfg ( relay_t *ctx );

Example key functions :

  • Relay set state

    void relay_set_state ( relay_t *ctx, uint8_t relay, uint8_t state );

Examples Description

Demo application is used to shows basic controls Relay Click

The demo application is composed of two sections :

Application Init

Configuring clicks and log objects. Settings the Click in the default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;
    relay_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    relay_cfg_setup( &cfg );
    RELAY_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    relay_init( &relay, &cfg );

    relay_default_cfg ( &relay );
    Delay_ms ( 1000 );
    Delay_ms ( 500 );
}

Application Task

Alternately sets relays to ON-OFF state...

void application_task ( void )
{
    uint8_t cnt;

    //  Task implementation.

    for ( cnt = 1; cnt <= 2; cnt++)
    {
        log_info( &logger, "*** Relay %d state is ON \r\n", cnt);
        relay_set_state( &relay, cnt, RELAY_STATE_ON );
        Delay_ms ( 1000 );
        log_info( &logger, "*** Relay %d state is OFF \r\n", cnt);
        relay_set_state( &relay, cnt, RELAY_STATE_OFF );
        Delay_ms ( 200 );
    }

}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Relay

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Flash 9 Click

0

Flash 9 Click is a compact add-on board that contains a highly reliable memory solution. This board features the W25Q02JV, an SPI configurable serial Flash memory solution from Winbond Electronics. It represents a four 512Mb stack die supporting linear addressing for the full 2Gb memory address range, offering flexibility and performance well beyond ordinary Serial Flash devices. The W25Q02JV array is organized into 1,048,576 programmable pages of 256-bytes each, where up to 256 bytes can be programmed at a time. This memory also has advanced security features, can withstand many write cycles (minimum 100k), and has a data retention period greater than 20 years.

[Learn More]

LED driver 6 Click

0

LED driver 6 Click is a high brightness LED or LED strip driver, designed to be used in tunable Smart Connected Lighting (SCL) applications. It is based on the AL1781, a single-channel PWM dimmable linear LED driver.

[Learn More]

Buck 8 Click

0

Buck 8 Click is a high efficiency, wide voltage range, and high current synchronous step down (buck) DC-DC converter, featuring two enhanced modes that can be used to drive lighter loads with increased efficiency.

[Learn More]