TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (403 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140948 times)
  2. FAT32 Library (73504 times)
  3. Network Ethernet Library (58321 times)
  4. USB Device Library (48502 times)
  5. Network WiFi Library (44091 times)
  6. FT800 Library (43666 times)
  7. GSM click (30546 times)
  8. mikroSDK (29268 times)
  9. PID Library (27220 times)
  10. microSD click (26930 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

ReRAM Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: ReRAM

Downloaded: 423 times

Not followed.

License: MIT license  

ReRAM Click features ReRAM (Resistive Random Access Memory) module which contains the cell array made of 524.288 words x 8 bits, which totals 4 Mbits of data. The used memory module can withstand a large number of write cycles, it has data retention period greater than 10 years and it can read and write to random addresses with no delay.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "ReRAM Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "ReRAM Click" changes.

Do you want to report abuse regarding "ReRAM Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


ReRAM Click

ReRAM Click features ReRAM (Resistive Random Access Memory) module which contains the cell array made of 524.288 words x 8 bits, which totals 4 Mbits of data. The used memory module can withstand a large number of write cycles, it has data retention period greater than 10 years and it can read and write to random addresses with no delay.

reram_click.png

Click Product page


Click library

  • Author : Nemanja Medakovic
  • Date : Oct 2019.
  • Type : SPI type

Software Support

We provide a library for the Reram Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Reram Click driver.

Standard key functions :

  • Configuration Object Setup function.

    void reram_cfg_setup( reram_cfg_t *cfg );

  • Click Initialization function.

    reram_err_t reram_init( reram_t ctx, reram_cfg_t cfg );

  • Click Default Configuration function.

    void reram_default_cfg ( reram_t *ctx );

Example key functions :

  • Command Send function.

    reram_err_t reram_send_cmd( reram_t *ctx, reram_spi_data_t cmd_code );

  • Status Read function.

    reram_spi_data_t reram_read_status( reram_t *ctx );

  • Memory Write function.

    reram_err_t reram_write_memory( reram_t ctx, uint32_t mem_addr, reram_spi_data_t data_in, uint16_t n_bytes );

Examples Description

This example demonstrates the use of the ReRAM Click board.

The demo application is composed of two sections :

Application Init

Initializes SPI serial interface and puts a device to the initial state. Data from 0 to 255 will be written in memory block from address 0x0 to address 0xFF.


void application_init( void )
{
    reram_cfg_t reram_cfg;
    log_cfg_t logger_cfg;

    //  Click object initialization.
    reram_cfg_setup( &reram_cfg );
    RERAM_MAP_MIKROBUS( reram_cfg, MIKROBUS_1 );
    reram_init( &reram, &reram_cfg );

    //  Click start configuration.
    reram_default_cfg( &reram );

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( logger_cfg );
    log_init( &logger, &logger_cfg );

    reram_wake_up( &reram );

    uint32_t id_data = reram_read_id( &reram );

    if ( RERAM_ID_DATA != id_data )
    {
        log_printf( &logger, "***  ReRAM Error ID  ***\r\n" );
        for( ; ; );
    }
    else
    {    
        log_printf( &logger, "***  ReRAM Initialization Done  ***\r\n" );
        log_printf( &logger, "***********************************\r\n" );
    }


    reram_send_cmd( &reram, RERAM_CMD_WREN );
    Delay_ms ( 1000 );
}

Application Task

Reads same memory block starting from address 0x0 to address 0xFF and sends memory content to USB UART, to verify memory write operation.


void application_task( void )
{
    reram_spi_data_t data_out;
    static uint16_t mem_addr = RERAM_MEM_ADDR_START;

    reram_read_memory( &reram, mem_addr, &data_out, 1 );

    log_printf( &logger, "* Memory Address [0x%X] : %u", mem_addr, data_out );
    log_write( &logger, "", LOG_FORMAT_LINE );

    if (mem_addr < 0xFF)
    {
        mem_addr++;
    }
    else
    {
        mem_addr = RERAM_MEM_ADDR_START;
    }

    Delay_ms ( 500 );
}

Note

Write Enable Latch is reset after the following operations:

  • After 'Write Disable'command recognition.
  • The end of writing process after 'Write Status' command recognition.
  • The end of writing process after 'Write Memory' command recognition.

Data will not be written in the protected blocks of the ReRAM array.

  • Upper 1/4 goes from address 0x60000 to 0x7FFFF.
  • Upper 1/2 goes from address 0x40000 to 0x7FFFF.
  • The entire ReRAM array goes from address 0x00000 to 0x7FFFF.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Reram

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Hall Current 12 Click

0

Hall Current 12 Click is a compact add-on board that provides economical and precise AC or DC current sensing solutions. This board features the TMCS1100, a galvanically isolated Hall-effect current sensor capable of DC or AC current measurement with high accuracy, excellent linearity, and temperature stability from Texas Instruments. It enables the lowest drift, <1% full-scale error, and highest accuracy over time and temperature. It also provides a reliable 600V lifetime working voltage and 3kVRMS isolation between the current path and circuitry with uni/bidirectional current sensing. Besides, the user is allowed to process the output signal in analog or digital form.

[Learn More]

RS232 to I2C Click

0

RS232 to I2C Click is a compact add-on board representing a universal usable RS232 to I2C converter. This board features the ZDU0110RFX, a bridge between a UART port and an I2C bus from Zilog, which at the same time represents the connection between the MCU and the RS232 line driver and receiver, the MAX3232. The ZDU0110RFX provides full-duplex asynchronous communications with a 128 byte FIFO buffer, of which 64 bytes each are allocated to receive and transmit operations. It also contains a 4kbit EEPROM and GPIO with programmable interrupt capability; programmable interrupts and interrupt lines for UART and GPIO notifications.

[Learn More]

Analog MUX 4 Click

0

Analog MUX 4 Click is a compact add-on board that switches one of many analog inputs to one digital output. This board features the TMUX1308, a general-purpose 8:1 single-ended CMOS multiplexer (MUX) from Texas Instruments. The TMUX1308 has an internal injection current control which eliminates the need for external diode and resistor networks to protect the switch and keep the input signals within the supply voltage. It also supports bidirectional analog and digital signals ranging from 0 to 5V, alongside several protection features allowing a reliable operation and protecting the device from potential damage.

[Learn More]