TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141590 times)
  2. FAT32 Library (74540 times)
  3. Network Ethernet Library (59060 times)
  4. USB Device Library (49091 times)
  5. Network WiFi Library (44838 times)
  6. FT800 Library (44398 times)
  7. GSM click (31067 times)
  8. mikroSDK (29936 times)
  9. microSD click (27504 times)
  10. PID Library (27492 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LIN Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: LIN

Downloaded: 598 times

Not followed.

License: MIT license  

The LIN Click is a Click board™ that features the TLE7259-3GE, a LIN transceiver from Infineon Technologies, with integrated wake-up and protection features.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LIN Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LIN Click" changes.

Do you want to report abuse regarding "LIN Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


LIN Click

The LIN Click is a Click board™ that features the TLE7259-3GE, a LIN transceiver from Infineon Technologies, with integrated wake-up and protection features.

lin_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Apr 2020.
  • Type : UART type

Software Support

We provide a library for the Lin Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Lin Click driver.

Standard key functions :

  • Config Object Initialization function.

    void lin_cfg_setup ( lin_cfg_t *cfg );

  • Initialization function.

    LIN_RETVAL lin_init ( lin_t ctx, lin_cfg_t cfg );

Example key functions :

  • Generic write function.

    void lin_generic_write ( lin_t ctx, char data_buf, uint16_t len );

  • Generic read function.

    int32_t lin_generic_read ( lin_t ctx, char data_buf, uint16_t max_len );

  • Set enable pin state.

    void lin_set_enable ( lin_t *ctx, uint8_t state );

Examples Description

This example reads and processes data from LIN clicks.

The demo application is composed of two sections :

Application Init

Initializes the driver and makes an initial log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    lin_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    lin_cfg_setup( &cfg );
    LIN_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    lin_init( &lin, &cfg );
    Delay_ms ( 100 );

    lin_set_enable ( &lin, 1 );
    lin_set_wake_up ( &lin, 0 );
    Delay_ms ( 100 );
#ifdef DEMO_APP_RECEIVER
    log_info( &logger, "---- Receiver mode ----" );
#endif    
#ifdef DEMO_APP_TRANSMITTER
    log_info( &logger, "---- Transmitter mode ----" );
#endif   
}

Application Task

Depending on the selected mode, it reads all the received data or sends the desired message every 2 seconds.


void application_task ( void )
{
#ifdef DEMO_APP_RECEIVER
    lin_process( );
#endif    

#ifdef DEMO_APP_TRANSMITTER
    lin_generic_write( &lin, TEXT_TO_SEND, strlen( TEXT_TO_SEND ) );
    log_info( &logger, "---- Data sent ----" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
#endif   
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Lin

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

USB-C Power Click

0

USB-C Power Click is a compact add-on board that provides a quick and easy way to supply power without carrying multiple adapters or cables. This board features the TPS25750S, a highly integrated USB Type-C and Power Delivery (PD) controller with integrated power switches optimized for power applications from Texas Instruments. The TPS25750S integrates fully managed power paths (5V/3A with 36mΩ sourcing switch) with robust protection (reverse and inrush current as well as over/under voltage protection) and control for external battery charger IC for a complete USB-C PD solution. Besides web-based GUI and pre-configured firmware, the TPS25750S also has some GPIOs and LED indicators that are user-defined for either status or control information.

[Learn More]

Multi Stepper TB67S261 Click

0

Multi Stepper Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the TB67S261FTG, a PHASE-in controlled bipolar stepping motor driver from Toshiba Semiconductor. It supports a PWM constant-current control drive and full-, half-, and quarter-step operation for less motor noise and smoother control. It has a wide operating voltage range of 10V to 47V with an output current capacity of 1.4A in addition to several built-in error detection circuits.

[Learn More]

Pressure 2 Click

0

Pressure 2 Click carries MS5803, a high resolution MEMS pressure sensor that is both precise and robust. Its measurement range is from 0 to 14 bars (with a resolution of up to 0.2 mbars), but because of the stainless steel cap enclosure, the sensor can withstand up to 30 bars of pressure. Pressure 2 Click communicates with the target board MCU either through mikroBUS SPI or I2C lines, depending on the position in which the onboard jumpers are soldered.

[Learn More]