TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142015 times)
  2. FAT32 Library (75249 times)
  3. Network Ethernet Library (59470 times)
  4. USB Device Library (49488 times)
  5. Network WiFi Library (45266 times)
  6. FT800 Library (44873 times)
  7. GSM click (31414 times)
  8. mikroSDK (30400 times)
  9. microSD click (27776 times)
  10. PID Library (27614 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LIN Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: LIN

Downloaded: 641 times

Not followed.

License: MIT license  

The LIN Click is a Click board™ that features the TLE7259-3GE, a LIN transceiver from Infineon Technologies, with integrated wake-up and protection features.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LIN Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LIN Click" changes.

Do you want to report abuse regarding "LIN Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


LIN Click

The LIN Click is a Click board™ that features the TLE7259-3GE, a LIN transceiver from Infineon Technologies, with integrated wake-up and protection features.

lin_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Apr 2020.
  • Type : UART type

Software Support

We provide a library for the Lin Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Lin Click driver.

Standard key functions :

  • Config Object Initialization function.

    void lin_cfg_setup ( lin_cfg_t *cfg );

  • Initialization function.

    LIN_RETVAL lin_init ( lin_t ctx, lin_cfg_t cfg );

Example key functions :

  • Generic write function.

    void lin_generic_write ( lin_t ctx, char data_buf, uint16_t len );

  • Generic read function.

    int32_t lin_generic_read ( lin_t ctx, char data_buf, uint16_t max_len );

  • Set enable pin state.

    void lin_set_enable ( lin_t *ctx, uint8_t state );

Examples Description

This example reads and processes data from LIN clicks.

The demo application is composed of two sections :

Application Init

Initializes the driver and makes an initial log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    lin_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    lin_cfg_setup( &cfg );
    LIN_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    lin_init( &lin, &cfg );
    Delay_ms ( 100 );

    lin_set_enable ( &lin, 1 );
    lin_set_wake_up ( &lin, 0 );
    Delay_ms ( 100 );
#ifdef DEMO_APP_RECEIVER
    log_info( &logger, "---- Receiver mode ----" );
#endif    
#ifdef DEMO_APP_TRANSMITTER
    log_info( &logger, "---- Transmitter mode ----" );
#endif   
}

Application Task

Depending on the selected mode, it reads all the received data or sends the desired message every 2 seconds.


void application_task ( void )
{
#ifdef DEMO_APP_RECEIVER
    lin_process( );
#endif    

#ifdef DEMO_APP_TRANSMITTER
    lin_generic_write( &lin, TEXT_TO_SEND, strlen( TEXT_TO_SEND ) );
    log_info( &logger, "---- Data sent ----" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
#endif   
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Lin

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

WaterDetect click

10

Water Detect click is used for detecting water and other electroconductive liquids. All you need to do is splash or soak the upper part of the click board, and the output of Microchip's MCP606 compactor will go positive, signaling the presence of liquid.

[Learn More]

8x8 B click

5

8x8 clicks are 8x8 LED matrix displays in form of add-on boards in mikroBUS form factor. Boards feature MAX7219 8-digit LED display driver module as well as 64 LED diodes.

[Learn More]

MCP2517FD click

6

MCP2517FD Click is a compact add-on board representing a complete CAN solution used as a control node in a CAN network. This board features the MCP2517FD and ATA6563, an external CAN FD controller with an SPI interface, and a high-speed CAN transceiver from Microchip. The ATA6563, a low-level physical layer IC (PHY), provides a physical connection with the CAN bus itself, while the CAN controller MCP2517FD represents an interface between the MCU and the PHY. It features three operating modes with dedicated fail-safe features, remote wake-up via CAN, and ideally passive behavior when powered off on the CAN bus. This Click board™ is suitable for developing a wide range of automotive diagnostic applications, even on MCUs that don’t support CAN interface.

[Learn More]