TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (404 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140999 times)
  2. FAT32 Library (73529 times)
  3. Network Ethernet Library (58329 times)
  4. USB Device Library (48518 times)
  5. Network WiFi Library (44139 times)
  6. FT800 Library (43701 times)
  7. GSM click (30549 times)
  8. mikroSDK (29317 times)
  9. PID Library (27220 times)
  10. microSD click (26935 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Signal Relay Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Relay

Downloaded: 402 times

Not followed.

License: MIT license  

Signal Relay Click can be used for ON/OFF control in various devices. It carries four ultra-small GV5-1 PCB relays from Omron and runs on a 5V power supply.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Signal Relay Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Signal Relay Click" changes.

Do you want to report abuse regarding "Signal Relay Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Signal Realy Click

Signal Relay Click can be used for ON/OFF control in various devices. It carries four ultra-small GV5-1 PCB relays from Omron and runs on a 5V power supply.

signalrelay_click.png

Click Product page


Click library

  • Author : Katarina Perendic
  • Date : okt 2019.
  • Type : GPIO type

Software Support

We provide a library for the SignalRealy Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for SignalRealy Click driver.

Standard key functions :

  • Config Object Initialization function.

    void signalrelay_cfg_setup ( signalrelay_cfg_t *cfg );

  • Initialization function.

    SIGNALRELAY_RETVAL signalrelay_init ( signalrelay_t ctx, signalrelay_cfg_t cfg );

  • Click Default Configuration function.

    void signalrelay_default_cfg ( signalrelay_t *ctx );

Example key functions :

  • Relays state

    void signalrelay_relay_state( signalrelay_t *ctx, uint8_t relay, uint8_t state );

Examples Description

Demo application is used to shows basic controls Signal Relay Click.

The demo application is composed of two sections :

Application Init

Configuring clicks and log objects. Settings the Click in the default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;
    signalrelay_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----");

    //  Click initialization.

    signalrelay_cfg_setup( &cfg );
    SIGNALRELAY_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    signalrelay_init( &signalrelay, &cfg );

    signalrelay_default_cfg ( &signalrelay );
}

Application Task

Alternately sets relays to ON-OFF state...


void application_task ( void )
{
    uint8_t cnt;

    //  Task implementation.

    for ( cnt = 1; cnt <= 4; cnt++ )
    {
        log_info( &logger, " *** Relay [ %d ] ON ", cnt );
        signalrelay_relay_state( &signalrelay, cnt, SIGNALRELAY_STATE_ON );
        Delay_ms ( 200 );
        log_info( &logger, " *** Relay [ %d ] OFF ", cnt );
        signalrelay_relay_state( &signalrelay, cnt, SIGNALRELAY_STATE_OFF );
        Delay_ms ( 200 );
    }
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.SignalRealy

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

SPIRIT 2 Click

0

SPIRIT 2 Click features the SP1ML-915, an ultra-low power, fully integrated RF module, which operates at 915 MHz ISM band. This Click board™ can be used to add wireless connectivity to any application, requiring no extensive RF communication experience. The module integrates all the required components, including the 32-bit STM32L1 MCU, a compact chip antenna, and accompanying circuitry. The SP1ML-915 module supports several types of modulation schemes, including 2-FSK, GFSK, GMSK, OOK, and ASK, allowing it to fulfill different RF transmission requirements.

[Learn More]

NFC Extend Click

0

NFC Extend Click is NFC tag interface device with possibility of using any shape and size external antenna, offering 16 Kbit of electrically erasable programmable memory (EEPROM). This Click Board™ offer two communication interfaces.

[Learn More]

LTE IoT 12 Click

0

LTE IoT 12 Click is a compact add-on board designed for low-power LTE Cat M1, NB-IoT, and EGPRS communication in IoT applications. This board features the BG95-M3 multi-mode data-only from Quectel, which also integrates GNSS (GPS, GLONASS, BDS, Galileo, QZSS) for precise location tracking. The board supports a wide range of LTE and 2G bands, offers ultra-low power consumption, and features advanced security via an ARM Cortex A7 processor with TrustZone technology. It includes UART and USB interfaces for easy communication, GNSS data output, and firmware upgrades.

[Learn More]