TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141701 times)
  2. FAT32 Library (74778 times)
  3. Network Ethernet Library (59221 times)
  4. USB Device Library (49226 times)
  5. Network WiFi Library (44999 times)
  6. FT800 Library (44536 times)
  7. GSM click (31200 times)
  8. mikroSDK (30104 times)
  9. microSD click (27586 times)
  10. PID Library (27543 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Signal Relay Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Relay

Downloaded: 539 times

Not followed.

License: MIT license  

Signal Relay Click can be used for ON/OFF control in various devices. It carries four ultra-small GV5-1 PCB relays from Omron and runs on a 5V power supply.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Signal Relay Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Signal Relay Click" changes.

Do you want to report abuse regarding "Signal Relay Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Signal Realy Click

Signal Relay Click can be used for ON/OFF control in various devices. It carries four ultra-small GV5-1 PCB relays from Omron and runs on a 5V power supply.

signalrelay_click.png

Click Product page


Click library

  • Author : Katarina Perendic
  • Date : okt 2019.
  • Type : GPIO type

Software Support

We provide a library for the SignalRealy Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for SignalRealy Click driver.

Standard key functions :

  • Config Object Initialization function.

    void signalrelay_cfg_setup ( signalrelay_cfg_t *cfg );

  • Initialization function.

    SIGNALRELAY_RETVAL signalrelay_init ( signalrelay_t ctx, signalrelay_cfg_t cfg );

  • Click Default Configuration function.

    void signalrelay_default_cfg ( signalrelay_t *ctx );

Example key functions :

  • Relays state

    void signalrelay_relay_state( signalrelay_t *ctx, uint8_t relay, uint8_t state );

Examples Description

Demo application is used to shows basic controls Signal Relay Click.

The demo application is composed of two sections :

Application Init

Configuring clicks and log objects. Settings the Click in the default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;
    signalrelay_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----");

    //  Click initialization.

    signalrelay_cfg_setup( &cfg );
    SIGNALRELAY_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    signalrelay_init( &signalrelay, &cfg );

    signalrelay_default_cfg ( &signalrelay );
}

Application Task

Alternately sets relays to ON-OFF state...


void application_task ( void )
{
    uint8_t cnt;

    //  Task implementation.

    for ( cnt = 1; cnt <= 4; cnt++ )
    {
        log_info( &logger, " *** Relay [ %d ] ON ", cnt );
        signalrelay_relay_state( &signalrelay, cnt, SIGNALRELAY_STATE_ON );
        Delay_ms ( 200 );
        log_info( &logger, " *** Relay [ %d ] OFF ", cnt );
        signalrelay_relay_state( &signalrelay, cnt, SIGNALRELAY_STATE_OFF );
        Delay_ms ( 200 );
    }
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.SignalRealy

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

13DOF 2 click

5

13DOF 2 click is an advanced 13-axis motion tracking Click board, which utilizes two different sensor ICs onboard: BME680, voc, humidity, pressure and temperature sensor and BMX160, a 9-axis sensor consisting of a 3-axis, low-g accelerometer, a low power 3-axis gyroscope and a 3-axis geomagnetic sensor.

[Learn More]

Compass 5 click

5

Compass 5 Click is a compact add-on board that contains a 3-axis magnetometer device suitable for compass application. This board features the AK09918C, a 3-axis electronic compass with high sensitive Hall sensor technology from AKM Semiconductor.

[Learn More]

AD-SWIO 3 Click

0

AD-SWIO 3 Click is a compact add-on board representing a software configurable input/output solution for various purposes. This board features the AD74115H, a single-channel, software-configurable input and output with HART mode from Analog Devices. It provides many functionality for analog input, analog output, digital input, digital output, 2-wire, 3-wire, and 4-wire resistance temperature detector (RTD), and thermocouple measurement capability. The supply power and isolation part are managed by the ADP1034, a 3-channel isolated micropower management unit with seven digital isolators and programmable power control, also from Analog Devices.

[Learn More]