TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (404 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141112 times)
  2. FAT32 Library (73906 times)
  3. Network Ethernet Library (58554 times)
  4. USB Device Library (48725 times)
  5. Network WiFi Library (44376 times)
  6. FT800 Library (43977 times)
  7. GSM click (30721 times)
  8. mikroSDK (29478 times)
  9. PID Library (27304 times)
  10. microSD click (27132 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Heater click

Rating:

5

Author: MIKROE

Last Updated: 2020-02-19

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Temperature & humidity

Downloaded: 2925 times

Not followed.

License: MIT license  

Heater Click is designed with intention of PCB heater concept testing and useful tool for heating complete casing where staying in specified temperature range is crucial. Exact PCB temperature can be set and controlled using TMP235 on board temperature sensor from Texas Instruments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Heater click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Heater click" changes.

Do you want to report abuse regarding "Heater click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

Heater click

Heater click

Native view of the Heater click board.

View full image
Heater click

Heater click

Front and back view of the Heater click board.

View full image

Library Description

Library provides control over led pins and function for reading raw ADC data as well a fucntion for reading converted data in temperature.

Key functions:

  • uint16_t heater_read_data ( void ); - Function for reading raw ADC data
  • float heater_read_temp ( void ); - Function that raw data converts in temperature

Examples description

The application is composed of three sections :

  • System Initialization - Initialization of I2C, UART modules and GPIO pins
  • Application Initialization - Initialization of PWM module and start heating up
  • Application Task - Durning the task device is heating up to 50 degree C and then cooling down to 40 degree C
void application_task ( )
{
    temp_read = heater_read_temp(  );
    
    if ( ( temp_read > HOT_TEMP ) && ( status_dev == HEATER_WAITING ) )
    {
        status_dev = HEATER_COOLING;
    }
    else if ( ( temp_read < COOL_TEMP ) && ( status_dev == HEATER_WAITING ) )
    {
        status_dev = HEATER_HEATING;
    }

    if ( status_dev == HEATER_HEATING )
    {
        heater_pwm_start(  );
        heater_set_led1_status( HEATER_LED_ON );
        heater_set_led2_status( HEATER_LED_OFF );
        status_dev = HEATER_WAITING;
    }
    else if ( status_dev == HEATER_COOLING )
    {
        heater_pwm_stop(  );
        heater_set_led1_status( HEATER_LED_OFF );
        heater_set_led2_status( HEATER_LED_ON );
        status_dev = HEATER_WAITING;
    }

    FloatToStr( temp_read, demo_txt );
    mikrobus_logWrite( " - Temperature: ", _LOG_TEXT );
    mikrobus_logWrite( demo_txt, _LOG_TEXT );
    mikrobus_logWrite( log_degree, _LOG_LINE );
    mikrobus_logWrite( "***************", _LOG_LINE );

    Delay_ms( 1000 );
}


Note:

  • Device turns red led on when heating up device and blue when cooling down
  • For this example you should supply device with additional 7V

The full application code, and ready to use projects can be found on our LibStock page.

Other mikroE Libraries used in the example:

  • I2C
  • PWM
  • UART
  • Conversion

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

Button ALARM Click

0

Button ALARM Click is a very interesting interactive gadget on a Click board™. It is an integrated capacitive touch sensor display in the form of a button. By utilizing an advanced capacitive touch sensing technology, the CTHS15CIC05ALARM sensor can successfully replace the traditional mechanical button, allowing very simplified yet reliable user interfaces to be developed. Besides the touch detection, this sensor also features a green power symbol icon with backlight, which makes the Click board™ very useful for building various stylized and visually appealing interfaces.

[Learn More]

AudioAmp 4 Click

0

AudioAmp 4 Click is a low-power audio amplifier with a digital volume control. It is equipped with the LM4860, an audio amplifier IC capable of delivering up to 1W of continuous power to an 8 Ω load.

[Learn More]

Single Cell click

5

The Single Cell click is a Click board which features MCP16251 synchronous boost regulator with true load disconnect and MCP1811A low-dropout (LDO) linear regulator that provide an ultra low quiescent current during device operation of about 250nA and can be shut down for 5nA (typical) supply current draw.

[Learn More]