TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141482 times)
  2. FAT32 Library (74340 times)
  3. Network Ethernet Library (58869 times)
  4. USB Device Library (48921 times)
  5. Network WiFi Library (44698 times)
  6. FT800 Library (44230 times)
  7. GSM click (30938 times)
  8. mikroSDK (29817 times)
  9. PID Library (27423 times)
  10. microSD click (27375 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Color 8 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 391 times

Not followed.

License: MIT license  

Color 8 Click is a color-sensing Click board™, a part of our sensor Click board™ line. Sensing the color by utilizing ROHM’s BH1749NUC, an integrated color sensor IC, it comes in the package which also includes the mikroSDK™ software, a library with all the functions.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Color 8 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Color 8 Click" changes.

Do you want to report abuse regarding "Color 8 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Color 8 Click

Color 8 Click is a color-sensing Click board™, a part of our sensor Click board™ line. Sensing the color by utilizing ROHM’s BH1749NUC, an integrated color sensor IC, it comes in the package which also includes the mikroSDK™ software, a library with all the functions.

color8_click.png

>

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the Color8 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Color8 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void color8_cfg_setup ( color8_cfg_t *cfg );

  • Initialization function.

    COLOR8_RETVAL color8_init ( color8_t ctx, color8_cfg_t cfg );

Example key functions :

  • This function reads data from register.

    uint16_t color8_read_data ( color8_t *ctx, uint8_t reg_data );

  • This functions reads 3 color filters and Clear Filters and converts the resulting color from RGB to HSL.

    float color8_get_color_value ( color8_t *ctx );

  • This function detect colors.

    uint8_t color8_get_color ( color8_t *ctx, float color_value );

Examples Description

This demo app reads RED, GREEEN, BLUE, IR data and return detect color.

The demo application is composed of two sections :

Application Init

Initialization device device configuration for start measurement.


void application_init ( void )
{
    log_cfg_t log_cfg;
    color8_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----\r\n" );

    //  Click initialization.

    color8_cfg_setup( &cfg );
    COLOR8_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    color8_init( &color8, &cfg );

    color8_default_cfg( &color8 );
    log_printf( &logger, "---- Start measurement ----\r\n");
}

Application Task

Reads RED, GREEEN, BLUE and IR data. Converts data to HSL value and return detect color.


void application_task ( void )
{
    uint16_t red_data;
    uint16_t green_data;
    uint16_t blue_data;
    uint16_t ir_data;
    uint8_t is_color;
    float color_value;

    red_data = color8_read_data( &color8, COLOR8_REG_RED_DATA );
    log_printf( &logger, " RED data : %d \r\n", red_data );

    green_data = color8_read_data( &color8, COLOR8_REG_GREEN_DATA );
    log_printf( &logger, " GREEN data : %d \r\n", green_data );

    blue_data = color8_read_data( &color8, COLOR8_REG_BLUE_DATA );
    log_printf( &logger, " BLUE data : %d \r\n", blue_data );

    ir_data = color8_read_data( &color8, COLOR8_REG_IR_DATA );
    log_printf( &logger, " IR data : %d \r\n", ir_data );

    color_value = color8_get_color_value( &color8 );
    log_printf( &logger, " HSL color value : %f \r\n", color_value );

    is_color = color8_get_color( &color8, color_value );
    switch( is_color )
    {
        case 1:
        {
            log_printf( &logger, "--- Color: ORANGE \r\n" );
            break;
        }
        case 2:
        {
            log_printf( &logger, "--- Color: RED \r\n" );
            break;
        }
        case 3:
        {
            log_printf( &logger, "--- Color: PINK \r\n" );
            break;
        }
        case 4:
        {
            log_printf( &logger, "--- Color: PURPLE \r\n" );
            break;
        }
        case 5:
        {
            log_printf( &logger, "--- Color: BLUE \r\n" );
            break;
        }
        case 6:
        {
            log_printf( &logger, "--- Color: CYAN \r\n" );
            break;
        }
        case 7:
        {
            log_printf( &logger, "--- Color: GREEN \r\n" );
            break;
        }
        case 8:
        {
            log_printf( &logger, "--- Color: YELLOW \r\n" );
            break;
        }
        default:
        {
            break;
        }
    }
    Delay_ms ( 1000 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Color8

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Light mix-sens click

5

Light mix-sens Click is carrying TMD37253, an advanced proximity measurement, color sense (RGBC+IR), and digital ambient light sensing (ALS) device. The TMD37253 slim module package has been designed to accommodate a “single hole” aperture approach that incorporates an IR LED and factory calibrated LED driver.

[Learn More]

6DOF IMU 11 Click

0

The 6DOF IMU 11 Click is a Click board™ based on the KMX63, a 6 Degrees-of-Freedom inertial sensor system on a single, silicon chip, which is designed to strike a balance between current consumption and noise performance with excellent bias stability over temperature.

[Learn More]

Multi Stepper TB67S109 Click

0

Multi Stepper Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the TB67S109AFTG, CLOCK-in controlled bipolar stepping motor driver from Toshiba Semiconductor. It supports a PWM constant-current control drive and allows from full-step up to 1/32 steps resolution for less motor noise and smoother control. It has a wide operating voltage range of 10V to 47V with an output current capacity of 2.8A in addition to several built-in error detection circuits.

[Learn More]