TOP Contributors

  1. MIKROE (2769 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139362 times)
  2. FAT32 Library (71816 times)
  3. Network Ethernet Library (57149 times)
  4. USB Device Library (47467 times)
  5. Network WiFi Library (43123 times)
  6. FT800 Library (42441 times)
  7. GSM click (29860 times)
  8. mikroSDK (28203 times)
  9. PID Library (26895 times)
  10. microSD click (26225 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Buck 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 135 times

Not followed.

License: MIT license  

Buck 3 Click is a very advanced synchronous step-down (buck) converter, which is designed to deliver noise and ripple-free voltage to highly sensitive applications, such as FPGA and high-performance DSP platforms.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Buck 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Buck 3 Click" changes.

Do you want to report abuse regarding "Buck 3 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Buck 3 Click

Buck 3 Click is a very advanced synchronous step-down (buck) converter, which is designed to deliver noise and ripple-free voltage to highly sensitive applications, such as FPGA and high-performance DSP platforms.

buck3_click.png

Click Product page


Click library

  • Author : Katarina Perendic
  • Date : nov 2019.
  • Type : GPIO type

Software Support

We provide a library for the Buck3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Buck3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void buck3_cfg_setup ( buck3_cfg_t *cfg );

  • Initialization function.

    BUCK3_RETVAL buck3_init ( buck3_t ctx, buck3_cfg_t cfg );

  • Click Default Configuration function.

    void buck3_default_cfg ( buck3_t *ctx );

Example key functions :

  • Function for setting device mode

    void buck3_set_device_state ( buck3_t *ctx, uint8_t state );

  • Function reads state of PGD pin

    uint8_t buck3_get_power_good ( buck3_t *ctx );

Examples Description

This example demonstrates the use of Buck 3 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and configures the Click board.

void application_init ( void )
{
    log_cfg_t log_cfg;
    buck3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    buck3_cfg_setup( &cfg );
    BUCK3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    buck3_init( &buck3, &cfg );

    buck3_default_cfg( &buck3 );
    log_info( &logger, "---- Buck 3 is activated ----" );
    Delay_1sec( );
}

Application Task

Checks the PGD pin state which signalize the undervoltage or overvoltage fault or the thermal shutdown condition. If there's any of the above faults detected it logs a desired message on USB UART.

void application_task ( void )
{
    if ( !buck3_get_power_good( &buck3 ) )
    {
        log_info ( &logger, "---- Overvoltage or thermal shutdown detected ----" );
    }
    Delay_1sec( );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Buck3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Rotary Y click

15

Rotary Y click carries a 15-pulse incremental rotary encoder with detents, surrounded by a ring of 16 LEDs. It’s a perfect solution for adding a precision input knob to your design. The encoder outputs A and B signals (out of phase to each other); the knob also acts as a push-button which sends an interrupt to the target board MCU.

[Learn More]

Rotary RGB Click

0

Rotary RGB Click is a compact add-on board for creating visual effects and precise position indications. This board features 16 individual RGB LEDs (WS2812B-2020) from Worldsemi and a high-quality rotary encoder (EC12D1564402) from ALPS. The WS2812B-2020 offers low driving voltage, high brightness, and excellent consistency, while the rotary encoder provides accurate 15-pulse incremental encoding with push-button functionality.

[Learn More]

Zero-Cross Click

0

Zero-Cross Click is a compact add-on board that has the ability to detect the change from positive to negative or negative to a positive level of a sinusoidal waveform. This board features circuitry that provides Zero Crossing Detection (ZCD). Whenever the sine wave crosses the ground potential, the output shifts from HIGH logic to LOW or vice-versa.

[Learn More]