TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139845 times)
  2. FAT32 Library (72209 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47740 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29980 times)
  8. mikroSDK (28440 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

BUCK 7 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 216 times

Not followed.

License: MIT license  

Buck 7 Click is a high-efficiency buck (step-down) DC-DC converter, which can provide digitally adjusted step-down voltage on its output while delivering up to 3.5A of current.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "BUCK 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "BUCK 7 Click" changes.

Do you want to report abuse regarding "BUCK 7 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


BUCK 7 Click

Buck 7 Click is a high-efficiency buck (step-down) DC-DC converter, which can provide digitally adjusted step-down voltage on its output while delivering up to 3.5A of current.

buck7_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : dec 2019.
  • Type : SPI type

Software Support

We provide a library for the BUCK7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for BUCK7 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void buck7_cfg_setup ( buck7_cfg_t *cfg );

  • Initialization function.

    BUCK7_RETVAL buck7_init ( buck7_t ctx, buck7_cfg_t cfg );

  • Click Default Configuration function.

    void buck7_default_cfg ( buck7_t *ctx );

Example key functions :

  • Function for settings output voltage.

    void buck7_set_output_voltage ( buck7_t *ctx, uint16_t voltage );

  • Function for enable chip

    void buck7_enable ( buck7_t *ctx );

  • Function for settings chip mode

    void buck7_set_mode ( buck7_t *ctx, uint8_t mode );

Examples Description

This demo application controls the voltage at the output using the BUCK 7 Click.

The demo application is composed of two sections :

Application Init

Initializes Driver init, reset chip, enable chip and set mode

void application_init ( void )
{
    log_cfg_t log_cfg;
    buck7_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    buck7_cfg_setup( &cfg );
    BUCK7_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    buck7_init( &buck7, &cfg );

    buck7_enable( &buck7 );
    buck7_set_mode( &buck7, BUCK7_MODE_PWM );
}

Application Task

Sets output voltage to 5V, 10V, 15V, 20V, 25V every 3 seconds. It is necessary to set the input voltage on 2.7V + maximum output voltage.

void application_task ( )
{
    buck7_set_output_voltage( &buck7, BUCK7_OUT_VOLTAGE_5V );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck7_set_output_voltage( &buck7, BUCK7_OUT_VOLTAGE_10V );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck7_set_output_voltage( &buck7, BUCK7_OUT_VOLTAGE_15V );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck7_set_output_voltage( &buck7, BUCK7_OUT_VOLTAGE_20V );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck7_set_output_voltage( &buck7, BUCK7_OUT_VOLTAGE_25V );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck7_set_output_voltage( &buck7, BUCK7_OUT_VOLTAGE_20V );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck7_set_output_voltage( &buck7, BUCK7_OUT_VOLTAGE_15V );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck7_set_output_voltage( &buck7, 0x0BB8 ); /* 10 V */
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.BUCK7

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

EPOS Module Click

0

EPOS Module Click is a compact add-on board that provides a low-power modem solution for use in EPOS terminals and telephone-based systems. It is based on the CMX869B, a multi-standard v.32 bis modem from CML Micro, which supports multiple communication protocols. The CMX869B has built-in functions such as DTMF encoding/decoding and a Powersave mode to optimize energy consumption. It also includes a fully isolated telephone interface via the P1200 transformer for reliable communication.

[Learn More]

GNSS 15 Click

0

GNSS 15 Click is a compact add-on board for advanced automotive navigation and tracking applications. This board features the TESEO-VIC3DA, an automotive GNSS dead-reckoning module from STMicroelectronics. This module combines a 6-axis IMU with multi-constellation satellite reception, offering exceptional accuracy and dead-reckoning capabilities. It stands out for its rapid time-to-first-fix and the ability to receive firmware updates for enhanced performance. Designed for flexibility, it supports both UART and I2C communications, includes pins for precise odometer readings, and features an SMA antenna connector for superior signal quality.

[Learn More]

6DOF IMU 8 click

5

6DOF IMU 8 click is an advanced 6-axis motion tracking Click board, which utilizes the ISM330DLC, a high-performance System in Package (SiP), equipped with a 3-axis gyroscope, and a 3-axis accelerometer.

[Learn More]