TOP Contributors

  1. MIKROE (2752 codes)
  2. Alcides Ramos (372 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139068 times)
  2. FAT32 Library (71594 times)
  3. Network Ethernet Library (56989 times)
  4. USB Device Library (47330 times)
  5. Network WiFi Library (43006 times)
  6. FT800 Library (42297 times)
  7. GSM click (29777 times)
  8. mikroSDK (27874 times)
  9. PID Library (26858 times)
  10. microSD click (26129 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

BUCK 7 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Buck

Downloaded: 179 times

Not followed.

License: MIT license  

Buck 7 Click is a high-efficiency buck (step-down) DC-DC converter, which can provide digitally adjusted step-down voltage on its output while delivering up to 3.5A of current.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "BUCK 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "BUCK 7 Click" changes.

Do you want to report abuse regarding "BUCK 7 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


BUCK 7 Click

Buck 7 Click is a high-efficiency buck (step-down) DC-DC converter, which can provide digitally adjusted step-down voltage on its output while delivering up to 3.5A of current.

buck7_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : dec 2019.
  • Type : SPI type

Software Support

We provide a library for the BUCK7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for BUCK7 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void buck7_cfg_setup ( buck7_cfg_t *cfg );

  • Initialization function.

    BUCK7_RETVAL buck7_init ( buck7_t ctx, buck7_cfg_t cfg );

  • Click Default Configuration function.

    void buck7_default_cfg ( buck7_t *ctx );

Example key functions :

  • Function for settings output voltage.

    void buck7_set_output_voltage ( buck7_t *ctx, uint16_t voltage );

  • Function for enable chip

    void buck7_enable ( buck7_t *ctx );

  • Function for settings chip mode

    void buck7_set_mode ( buck7_t *ctx, uint8_t mode );

Examples Description

This demo application controls the voltage at the output using the BUCK 7 Click.

The demo application is composed of two sections :

Application Init

Initializes Driver init, reset chip, enable chip and set mode

void application_init ( void )
{
    log_cfg_t log_cfg;
    buck7_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    buck7_cfg_setup( &cfg );
    BUCK7_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    buck7_init( &buck7, &cfg );

    buck7_enable( &buck7 );
    buck7_set_mode( &buck7, BUCK7_MODE_PWM );
}

Application Task

Sets output voltage to 5V, 10V, 15V, 20V, 25V every 3 seconds. It is necessary to set the input voltage on 2.7V + maximum output voltage.

void application_task ( )
{
    buck7_set_output_voltage( &buck7, BUCK7_OUT_VOLTAGE_5V );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck7_set_output_voltage( &buck7, BUCK7_OUT_VOLTAGE_10V );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck7_set_output_voltage( &buck7, BUCK7_OUT_VOLTAGE_15V );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck7_set_output_voltage( &buck7, BUCK7_OUT_VOLTAGE_20V );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck7_set_output_voltage( &buck7, BUCK7_OUT_VOLTAGE_25V );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck7_set_output_voltage( &buck7, BUCK7_OUT_VOLTAGE_20V );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck7_set_output_voltage( &buck7, BUCK7_OUT_VOLTAGE_15V );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    buck7_set_output_voltage( &buck7, 0x0BB8 ); /* 10 V */
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.BUCK7

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

8x8 G Click

0

8x8 G Click is a 64 LED matrix display Click board™, composed of SMD LEDs organized in 8 rows by 8 columns. It has a digital brightness control in 16 steps, it can control every LED in the display matrix independently, it blanks the display on power up to eliminate glitches and it requires a single resistor to control the current through all the LEDs at once, which simplifies the design. 8x8 G Click uses a fast SPI communication protocol, allowing fast display response and no lag.

[Learn More]

TouchKey 3 click

5

TouchKey 3 click is equipped with advanced capacitive sensors, based on the proprietary QTouch technology, that can be used to sense touch on 7 different keys.

[Learn More]

LightRanger 7 Click

0

LightRanger 7 Click is a compact add-on board capable of precise distance measurement and motion tracking. This board features the AFBR-S50, a medium-range 3D multipixel Time-of-Flight (ToF) sensor from Broadcom. Besides a VCSEL-based ToF sensor (Laser Class 1 eye safety), optimized to measure various distances working equally well on white, black, colored, and metallic reflective surfaces, this board also includes a 32-bit MCU, RA4M2 group of Renesas MCU with Arm® Cortex®-M33 core, alongside a 4-pin standard CAN connections compatible with Pixhawk®, a popular general-purpose flight controller.

[Learn More]