TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141304 times)
  2. FAT32 Library (74107 times)
  3. Network Ethernet Library (58718 times)
  4. USB Device Library (48831 times)
  5. Network WiFi Library (44526 times)
  6. FT800 Library (44078 times)
  7. GSM click (30834 times)
  8. mikroSDK (29673 times)
  9. PID Library (27357 times)
  10. microSD click (27251 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

MRAM Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: MRAM

Downloaded: 365 times

Not followed.

License: MIT license  

MRAM Click features MRAM module which contains 262,144 magnetoresistive memory cells, organized into 32,768 bytes of memory. It means that MRAM Click is a memory storage device with 32KB of memory space. The used memory module can withstand an unlimited number of write cycles, it has data retention period greater than 20 years and it can read and write to random addresses with no delay.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "MRAM Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "MRAM Click" changes.

Do you want to report abuse regarding "MRAM Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


MRAM Click

MRAM Click features MRAM module which contains 262,144 magnetoresistive memory cells, organized into 32,768 bytes of memory. It means that MRAM Click is a memory storage device with 32KB of memory space.

mram_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the MRAM Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for MRAM Click driver.

Standard key functions :

  • mram_cfg_setup Config Object Initialization function.

    void mram_cfg_setup ( mram_cfg_t *cfg ); 
  • mram_init Initialization function.

    err_t mram_init ( mram_t *ctx, mram_cfg_t *cfg );
  • mram_default_cfg Click Default Configuration function.

    void mram_default_cfg ( mram_t *ctx );

Example key functions :

  • mram_write_data_bytes Function writes n bytes of data from the buffer.

    void mram_write_data_bytes ( mram_t *ctx, const uint16_t address, uint8_t *buffer, const uint16_t nBytes);
  • mram_read_data_bytes Function reads n bytes of data and saves it in buffer.

    void mram_read_data_bytes ( mram_t *ctx, const uint16_t address, uint8_t *buffer, const uint16_t n_bytes);
  • mram_enable_write_protect Function enables or disables write protect.

    void mram_enable_write_protect ( mram_t *ctx, uint8_t state);

Examples Description

This example writes and reads from the Mram Click and displays it on the terminal.

The demo application is composed of two sections :

Application Init

Initializes Click driver.


void application_init ( void )
{
    log_cfg_t log_cfg;
    mram_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    mram_cfg_setup( &cfg );
    MRAM_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    mram_init( &mram, &cfg );
    mram_default_cfg( &mram );
}

Application Task

Writes 10 bytes of buffer data in memory with start address 0x0001. Then reads 10 bytes from memory with start address 0x0001 and shows result on USB UART.


void application_task ( void )
{
    uint8_t number_bytes_write;
    uint8_t number_bytes_read;
    uint16_t i;
    uint8_t data_write[ 10 ] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
    uint8_t data_read[ 20 ] = { 0 };

    number_bytes_write = 10;
    number_bytes_read = 10;

    log_printf( &logger, " Data written!\r\n" );
    mram_write_data_bytes ( &mram, 0x0001, data_write, number_bytes_write );

    log_printf( &logger, " Read data:\r\n" );
    mram_read_data_bytes ( &mram, 0x0001, data_read, number_bytes_read );

    for ( i = 0; i < number_bytes_read; i++ )
    {
        log_printf( &logger, "%d ", ( uint16_t )data_read[ i ] );
    }

    log_printf( &logger, "\n" );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.MRAM

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

UT-S 7-SEG R Click

0

7-segment LED display is the most commonly used type of display to represent changing numerical values. The principle is very simple - seven LED segments are positioned in a certain shape and by turning specific segments on or off, the shape that resembles a specific number is lit. This method of displaying numbers was first used in the beginning of the 20th century, but after the invention of the LED in ‘70, it is the most commonly used method to display numbers. It utilizes a fairly simple and cheap design with the numbers clearly visible.

[Learn More]

TempHum 20 Click

0

Temp&Hum 20 Click is a compact add-on board that represents temperature and humidity sensing solution. This board features the CC2D23, a highly accurate, fully-calibrated relative humidity and temperature sensor from Amphenol. This sensor, characterized by its high accuracy (±2% from 20% to 80%RH (±3% over entire humidity range)) and high resolution, provides factory-calibrated 14-bit data to the host controller with a configurable I2C interface. It also comes with alarm features for preset control at a minimum and maximum humidity.

[Learn More]

RGB Driver Click

0

RGB Driver Click is an RGB LED driver, capable of driving RGB LED stripes, LED fixtures and other RGB LED applications that demand an increased amount of current and voltage.

[Learn More]