TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141701 times)
  2. FAT32 Library (74778 times)
  3. Network Ethernet Library (59220 times)
  4. USB Device Library (49226 times)
  5. Network WiFi Library (44999 times)
  6. FT800 Library (44536 times)
  7. GSM click (31200 times)
  8. mikroSDK (30103 times)
  9. microSD click (27586 times)
  10. PID Library (27543 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Ambient 8 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 401 times

Not followed.

License: MIT license  

Ambient 8 Click is equipped with the ambient light sensor (ALS) IC, providing measurements of the ambient light intensity in a digital format. It utilizes the LTR-329ALS-01, an ALS with the I2C interface.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Ambient 8 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Ambient 8 Click" changes.

Do you want to report abuse regarding "Ambient 8 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Ambient 8 Click

Ambient 8 Click is equipped with the ambient light sensor (ALS) IC, providing measurements of the ambient light intensity in a digital format. It utilizes the LTR-329ALS-01, an ALS with the I2C interface.

ambient8_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the Ambient8 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Ambient8 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void ambient8_cfg_setup ( ambient8_cfg_t *cfg );

  • Initialization function.

    AMBIENT8_RETVAL ambient8_init ( ambient8_t ctx, ambient8_cfg_t cfg );

  • Click Default Configuration function.

    void ambient8_default_cfg ( ambient8_t *ctx );

Example key functions :

  • This function sets constants ( gain and integration time ) for lux level calculation.

    void ambient8_set_constants ( ambient8_t* ctx );

  • This function checks for new data by polling ALS status register.

    AMBIENT8_RETVAL ambient8_get_als_data ( ambient8_t ctx, uint16_t als_data_ch1,uint16_t* als_data_ch0 );

  • This function reads and data and performs lux level calculation

    AMBIENT8_RETVAL ambient8_get_lux_level ( ambient8_t ctx, float lux_level, float window_factor, float IR_factor );

Examples Description

This example collects data from the sensor, calculates the light intensity and then logs it.

The demo application is composed of two sections :

Application Init

Initializes device and I2C driver.


void application_init ( void )
{
    log_cfg_t log_cfg;
    ambient8_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    ambient8_cfg_setup( &cfg );
    AMBIENT8_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    ambient8_init( &ambient8, &cfg );

    window_factor = 1.0;
    IR_factor = 0.0;
}

Application Task

Performs Lux calculation based on window and IR factor and log results.


void application_task ( void )
{
    status_flag = ambient8_get_lux_level( &ambient8, &lux_level, window_factor, IR_factor );

    if ( status_flag == 0 )
    {
        log_printf( &logger, "Lux level : %.2f lx\r\n", lux_level );
    }
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Ambient8

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LTE IoT 14 Click

0

LTE IoT 14 Click is a compact add-on board designed for low-latency and low-throughput wireless data communication in IoT applications. This board features the SIM7090G, a multi-band LTE module from SIMCom, supporting Cat-M and Cat-NB communication modes and multi-constellation GNSS (GPS/GLONASS/Galileo/BeiDou) for global connectivity. This board features a UART interface for communication with the host MCU, a USB Type-C port for data transfer and firmware upgrades, as well as visual indicators for real-time network and power status. It also includes test points for easier debugging, dual SMA connectors for LTE and GNSS antennas, and a micro SIM card holder for flexible service provider selection.

[Learn More]

Ambient click

5

Ambient click is an ambient light sensor carrying the Melexis MLX75035 IC. This chip consists of a photodiode, a transimpendance amplifier, and an output transistor. It converts the ambient light intensity into a voltage, using the mikroBUS AN pin for communicating with the target board microcontroller.

[Learn More]

Accel 7 Click

0

The acceleration sensing is based on the principle of measuring the differential capacitance, which further decreases errors due to manufacturing imperfections, temperature and other environmental influences. The micro-electromechanical sensor (MEMS) is coupled with a very advanced application specific integrated circuit (ASIC), which allows the simplicity of the KXTJ3-1057 design, requiring a low number of additional external components.

[Learn More]