We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.17
mikroSDK Library: 2.0.0.0
Category: Amplifier
Downloaded: 213 times
Not followed.
License: MIT license
AudioAmp 3 Click is a stereo audio amplifier, capable of delivering up to 79W per channel with the 4Ω load.
Do you want to subscribe in order to receive notifications regarding "AudioAmp 3 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "AudioAmp 3 Click" changes.
Do you want to report abuse regarding "AudioAmp 3 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
3380_audioamp_3_click.zip [787.57KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
AudioAmp 3 Click is a stereo audio amplifier, capable of delivering up to 79W per channel with the 4Ω load.
We provide a library for the AudioAmp3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for AudioAmp3 Click driver.
Config Object Initialization function.
void audioamp3_cfg_setup ( audioamp3_cfg_t *cfg );
Initialization function.
AUDIOAMP3_RETVAL audioamp3_init ( audioamp3_t ctx, audioamp3_cfg_t cfg );
Click Default Configuration function.
void audioamp3_default_cfg ( audioamp3_t *ctx );
This function power up the audio amplifier by sets to '1' state of the STB pin of the AudioAmp 3 Click board.
void audioamp3_power_up ( audioamp3_t *ctx );
This function set the play mode for all channels by writing the appropriate value to
the target AUDIOAMP3_EXT_CTRL_REG_5 ( 0x0C ) register of TAS5414C-Q1
four channel digital audio amplifiers on AudioAmp 3 Click board.
AUDIOAMP3_STATUS_T audioamp3_set_play_mode ( audioamp3_t *ctx );
This function set the gain level for all channels by writing the appropriate value
to the target AUDIOAMP3_EXT_CTRL_REG_1 ( 0x08 ) register of TAS5414C-Q1
four channel digital audio amplifiers on AudioAmp 3 Click board.
AUDIOAMP3_STATUS_T audioamp3_set_gain_lvl ( audioamp3_t *ctx, uint8_t gain_lvl );
This is an example which demonstrates the use of AudioAmp 3 Click board, stereo audio amplifier.
The demo application is composed of two sections :
Application Init performs Logger and Click initialization.
void application_init ( void )
{
log_cfg_t log_cfg;
audioamp3_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_printf( &logger, "--------------------------\r\n\n" );
log_printf( &logger, " Application Init\r\n" );
Delay_ms ( 100 );
// Click initialization.
audioamp3_cfg_setup( &cfg );
AUDIOAMP3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
audioamp3_init( &audioamp3, &cfg );
log_printf( &logger, "--------------------------\r\n\n" );
log_printf( &logger, "--- AudioAmp 3 Click ---\r\n" );
log_printf( &logger, "--------------------------\r\n\n" );
Delay_ms ( 1000 );
audioamp3_power_up( &audioamp3 );
log_printf( &logger, " Power Up \r\n" );
log_printf( &logger, " ---------------------------\r\n\n" );
Delay_100ms();
audioamp3_set_channel_low_to_low( &audioamp3, AUDIOAMP3_MASK_BIT_SEL_CH_1 );
log_printf( &logger, " Set channel 1 low-low state \r\n" );
log_printf( &logger, " ---------------------------\r\n\n" );
Delay_100ms();
audioamp3_set_channel_low_to_low( &audioamp3, AUDIOAMP3_MASK_BIT_SEL_CH_2 );
log_printf( &logger, " Set channel 2 low-low state \r\n" );
log_printf( &logger, " ---------------------------\r\n\n" );
Delay_100ms();
audioamp3_set_channel_mute_mode( &audioamp3, AUDIOAMP3_MASK_BIT_SEL_ALL_CH );
log_printf( &logger, " Mute All Channels \r\n" );
log_printf( &logger, " ---------------------------\r\n\n" );
Delay_100ms();
audioamp3_run_channel_diagnostics( &audioamp3, AUDIOAMP3_MASK_BIT_SEL_ALL_CH );
log_printf( &logger, " Run Diagnostics \r\n" );
log_printf( &logger, " ---------------------------\r\n\n" );
Delay_100ms();
audioamp3_hw_reset( &audioamp3 );
log_printf( &logger, " Hardware Reset \r\n" );
log_printf( &logger, " ---------------------------\r\n\n" );
Delay_100ms();
audioamp3_read_all_diagnostics( &audioamp3, &data_out[ 0 ] );
log_printf( &logger, " Read Diagnostics \r\n" );
log_printf( &logger, " ---------------------------\r\n\n" );
Delay_100ms();
log_printf( &logger, "--------------------------\r\n\n" );
log_printf( &logger, " Initialization done \r\n" );
log_printf( &logger, "--------------------------\r\n\n" );
Delay_ms ( 1000 );
audioamp3_set_play_mode( &audioamp3 );
log_printf( &logger, " ---------------------------\r\n\n" );
log_printf( &logger, " Play \r\n" );
log_printf( &logger, " ---------------------------\r\n\n" );
Delay_100ms();
}
This is an example which waits for valid user input and executes functions based on set of valid commands. Results are being sent to the UART Terminal where you can track their changes.
void application_task ( void )
{
for ( cnt = AUDIOAMP3_GAIN_VAL_MIN; cnt < AUDIOAMP3_GAIN_VAL_5; cnt++ )
{
status_flag = audioamp3_set_gain_lvl( &audioamp3, cnt );
log_printf( &logger, " - Volume Up - \r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
log_printf( &logger, " ---------------------------\r\n\n" );
for ( cnt = AUDIOAMP3_GAIN_VAL_MAX; cnt > AUDIOAMP3_GAIN_VAL_0; cnt-- )
{
status_flag = audioamp3_set_gain_lvl( &audioamp3, cnt );
log_printf( &logger, " - Volume Down - \r\n" );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
log_printf( &logger, " ---------------------------\r\n\n" );
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.