TOP Contributors

  1. MIKROE (2752 codes)
  2. Alcides Ramos (372 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139071 times)
  2. FAT32 Library (71595 times)
  3. Network Ethernet Library (56989 times)
  4. USB Device Library (47330 times)
  5. Network WiFi Library (43006 times)
  6. FT800 Library (42297 times)
  7. GSM click (29777 times)
  8. mikroSDK (27876 times)
  9. PID Library (26859 times)
  10. microSD click (26129 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

CO2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.15

mikroSDK Library: 2.0.0.0

Category: Gas

Downloaded: 270 times

Not followed.

License: MIT license  

CO2 Click is a compact add-on board that contains Sensirion miniature CO2 sensor. This board features the STC31, a gas concentration sensor designed for high-volume applications. The STC31 utilizes a revolutionized thermal conductivity measurement principle, which results in superior repeatability and long-term stability. The outstanding performance of these sensors is based on Sensirion’s patented CMOSens® sensor technology, which combines the sensor element, signal processing, and digital calibration on a small CMOS chip. It features a digital I2C interface, which makes it easy to connect directly to MCU. This Click board™ represents an ideal choice for health, environmental, industrial, residential monitoring of high CO2 concentrations and applications where reliability is crucial.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "CO2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "CO2 Click" changes.

Do you want to report abuse regarding "CO2 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


CO2 Click

CO2 Click is a compact add-on board that contains Sensirion’s miniature CO2 sensor. This board features the STC31, a gas concentration sensor designed for high-volume applications. The STC31 utilizes a revolutionized thermal conductivity measurement principle, which results in superior repeatability and long-term stability. The outstanding performance of these sensors is based on Sensirion’s patented CMOSens® sensor technology, which combines the sensor element, signal processing, and digital calibration on a small CMOS chip. It features a digital I2C interface, which makes it easy to connect directly to MCU. This Click board™ represents an ideal choice for health, environmental, industrial, residential monitoring of high CO2 concentrations and applications where reliability is crucial.

CO2_click.png

Click Product page


Click library

  • Author : Luka Filipovic
  • Date : Jun 2021.
  • Type : I2C type

Software Support

We provide a library for the CO2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for CO2 Click driver.

Standard key functions :

  • co2_cfg_setup Config Object Initialization function.

    void co2_cfg_setup ( co2_cfg_t *cfg );
  • co2_init Initialization function.

    err_t co2_init ( co2_t *ctx, co2_cfg_t *cfg );
  • co2_default_cfg Click Default Configuration function.

    err_t co2_default_cfg ( co2_t *ctx );

Example key functions :

  • co2_get_id Read device and serial ID's.

    err_t co2_get_id ( co2_t *ctx );
  • co2_set_reference Set device refrence values for gas calculation.

    err_t co2_set_reference ( co2_t *ctx, uint16_t humidity, uint16_t pressure );
  • co2_read_gas Read CO2 concentration and temperature value.

    err_t co2_read_gas ( co2_t *ctx, float *gas_concentration, float *temperature );

Example Description

This example showcases ability of Click board. It reads ID's configures device for operation work and reads CO2 gas concentration in air and temperature of IC every second.

The demo application is composed of two sections :

Application Init

Initialization of host communication modules (UART, I2C). Checks device and serial ID's from device. Then calls default configuration function that resets device, self tests it selft and configures for measuring CO2 concentration from air.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    co2_cfg_setup( &co2_cfg );
    CO2_MAP_MIKROBUS( co2_cfg, MIKROBUS_1 );
    err_t init_flag = co2_init( &co2, &co2_cfg );
    if ( init_flag == I2C_MASTER_ERROR ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    init_flag = co2_get_id( &co2 );

    if ( ( init_flag < 0 ) && ( co2.device_id != CO2_DEVICE_ID ) )
    {
        log_error( &logger, "ID" );
    }
    else
    {
        log_printf( &logger, " > Device ID: 0x%.8lX\r\n", co2.device_id );
        log_printf( &logger, " > Serial ID: 0x%.8lX%.8lX\r\n", co2.serial_id[ 0 ], co2.serial_id[ 1 ] );
    }

    init_flag = co2_default_cfg ( &co2 );

    if ( init_flag < 0 )
    {
        log_error( &logger, " Default configuration. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    //Set reference values for device to calculate gas concentartion.
    if ( CO2_OK != co2_set_reference( &co2, CO2_AIR_HUMIDITY, CO2_AIR_PRESSURE ) )
    {
        log_error( &logger, " Reference values." );
    }

    Delay_ms ( 1000 );
    log_info( &logger, " Application Task " );
}

Application Task

Reads air CO2 gas concentration in precentage and IC's temperature in deg Celzius in span of 1 second and logs data to UART Terminal.


void application_task ( void )
{
    float gas_data = 0;
    float temp_data = 0;

    if ( CO2_OK == co2_read_gas( &co2, &gas_data, &temp_data ) )
    {
        log_printf( &logger, " > CO2[%%]: %.2f\r\n", gas_data );
        log_printf( &logger, " > Temperature[degC]: %.2f\r\n", temp_data );
        Delay_ms ( 1000 );
    }

    Delay_ms ( 1 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.CO2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Current 4 Click

0

Current 4 Click is a compact add-on board that provides a precise and accurate current sensing solution. This board features the INA250, a bidirectional, zero-drift current-shunt monitor from Texas Instruments.

[Learn More]

DC Motor 3 click

1

DC Motor 3 click is a mikroBUS add-on board with a Toshiba TB6549FG full-bridge driver for direct current motors. The IC is capable of outputting currents of up to 3.5 A with 30V, making it suitable for high-power motors. The click communicates with the target MCU through the mikroBUS PWM pin. Designed to use a 3.3 power supply only.

[Learn More]

Hall Current 15 Click

0

Hall Current 15 Click is a compact add-on board that provides precise AC or DC current-sensing solution. This board features the TMCS1101-Q1, a galvanically isolated Hall-effect current sensor capable of DC or AC current measurement with high accuracy, excellent linearity, and temperature stability from Texas Instruments. A low-drift, temperature-compensated signal chain provides <1.5% full-scale error across a broad operating temperature range. It also provides a reliable 600V lifetime working voltage and 3kVRMS isolation between the current path and circuitry with uni/bidirectional current sensing. Besides, the user is allowed to process the output signal in analog or digital form.

[Learn More]