TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (404 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141003 times)
  2. FAT32 Library (73532 times)
  3. Network Ethernet Library (58331 times)
  4. USB Device Library (48520 times)
  5. Network WiFi Library (44140 times)
  6. FT800 Library (43702 times)
  7. GSM click (30568 times)
  8. mikroSDK (29318 times)
  9. PID Library (27220 times)
  10. microSD click (26935 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Current Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Current sensor

Downloaded: 328 times

Not followed.

License: MIT license  

Current Click is an add-on board used for measurement of electric current. It features INA196 current shunt monitor, MCP3201 12-bit ADC, MAX6106 voltage reference as well as two screw terminals.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Current Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Current Click" changes.

Do you want to report abuse regarding "Current Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Current Click

Current Click is an add-on board used for measurement of electric current. It features INA196 current shunt monitor, MCP3201 12-bit ADC, MAX6106 voltage reference as well as two screw terminals.

current_click.png

Click Product page


Click library

  • Author : Jovan Stajkovic
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Current Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Current Click driver.

Standard key functions :

  • Config Object Initialization function.

    void current_cfg_setup ( current_cfg_t *cfg );

  • Initialization function.

    CURRENT_RETVAL current_init ( current_t ctx, current_cfg_t cfg );

Example key functions :

  • Function is used to calculate current in mA.

    float current_get_current_data ( current_t *ctx, float r_hunt );

Examples Description

This is an example that shows the capabilities of the Current Click board by measuring current in miliampers. Current Click board can be used to safely measure DC current in the range of 2-2048mA depending on shunt resistor.

The demo application is composed of two sections :

Application Init

Initalizes SPI, LOG and Click drivers.


void application_init ( void )
{
    log_cfg_t log_cfg;
    current_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    current_cfg_setup( &cfg );
    CURRENT_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    current_init( &current, &cfg );
    log_printf( &logger, "-----------------------\r\n" );
    log_printf( &logger, "    Current  Click     \r\n" );
    log_printf( &logger, "-----------------------\r\n" );
}

Application Task

Measures DC current and displays the results on USB UART each second.


void application_task ( void )
{
    curr = current_get_current_data( &current, CURRENT_RSHUNT_0_05 );

    if ( curr == CURRENT_OUT_OF_RANGE )
    {
        log_printf( &logger, "Out of range!\r\n" );
    }
    else
    {
       log_printf( &logger, " Current: %.2f mA\r\n", curr );
    }

    log_printf( &logger, "-----------------------\r\n" );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Current

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

UWB 2 Click

0

UWB 2 Click is a compact add-on board that brings Ultra-Wideband communication to any solution. This board features the DWM3000, an IEEE 802.15-z UWB transceiver module from Qorvo. This module fully aligns with FiRaTM PHY, MAC, and certification development. It uses an integrated UWB antenna to establish wireless communication in UWB channels 5 (6.5GHz) and 9 (8GHz). This Click board™ makes the perfect solution for developing precision real-time location systems (RTLS) using two-way ranging or TDoA schemes in various markets, location-aware wireless sensor networks (WSNs), and more.

[Learn More]

Thermo 7 click

5

Thermo 7 click is a Click board equipped with the sensor IC, which can digitize temperature measurements between -55°C and +125°C so that the temperature measurement data can be processed by the host MCU.

[Learn More]

e Fuse 3 Click

0

eFuse 3 Click is a compact add-on board that contains an electronic eFuse. This board features the NIS6150, a resettable fuse that can significantly enhance the reliability of a USB application from both catastrophic and shutdown failures from ON Semiconductor. It is designed to buffer the load device from the excessive input voltage, which can damage sensitive circuits and protect the input side from reverse currents. It includes an over-voltage clamp circuit that limits the output voltage during transients but doesn’t shut the unit down, allowing the load circuit to continue its operation.

[Learn More]