TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139566 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57256 times)
  4. USB Device Library (47631 times)
  5. Network WiFi Library (43220 times)
  6. FT800 Library (42566 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26933 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

RTC 6 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.19

mikroSDK Library: 2.0.0.0

Category: RTC

Downloaded: 276 times

Not followed.

License: MIT license  

RTC6 Click carries Microchip’s MCP79410 Real-Time Clock/Calendar IC with built-in 64 bytes of battery-backed SRAM an additional 1 Kbit of EEPROM.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "RTC 6 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "RTC 6 Click" changes.

Do you want to report abuse regarding "RTC 6 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


RTC6 Click

RTC6 Click carries Microchip’s MCP79410 Real-Time Clock/Calendar IC with built-in 64 bytes of battery-backed SRAM an additional 1 Kbit of EEPROM.

rtc6_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : jan 2020.
  • Type : I2C type

Software Support

We provide a library for the Rtc6 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Rtc6 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void rtc6_cfg_setup ( rtc6_cfg_t *cfg );

  • Initialization function.

    RTC6_RETVAL rtc6_init ( rtc6_t ctx, rtc6_cfg_t cfg );

  • Click Default Configuration function.

    void rtc6_default_cfg ( rtc6_t *ctx );

Example key functions :

  • This function enables automatic switch to battery on VCC failure.

    void rtc6_battery_enable ( rtc6_t *ctx );

  • This function gets current GMT time and sets it in the RTC.

    void rtc6_get_gmt_time ( rtc6_t ctx, rtc6_time_t gmt_time );

  • his function calculates current local time.

    void rtc6_get_local_time ( rtc6_t ctx, rtc6_time_t local_time );

Examples Description

This application enables usage of Real-TIme clock and calendar with alarm on RTC 6 Click.

The demo application is composed of two sections :

Application Init

Initializes driver init, sets time zone, sets UTC-GMT time and alarm time


void application_init ( void )
{
    log_cfg_t log_cfg;
    rtc6_cfg_t cfg;
    int8_t time_zone = 2;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    rtc6_cfg_setup( &cfg );
    RTC6_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    rtc6_init( &rtc6, &cfg );

    // Set UTC time

    utc_time.seconds  = 40;
    utc_time.minutes  = 59;
    utc_time.hours    = 23;
    utc_time.monthday = 14;
    utc_time.month    = 12;
    utc_time.year     = 18;

    // Set alarm time

    alarm_time.seconds  = 0;
    alarm_time.minutes  = 0;
    alarm_time.hours    = 0;
    alarm_time.weekdays  = 0;
    alarm_time.monthday = 15;
    alarm_time.month    = 12;
    alarm_time.year     = 18;

    rtc6_default_cfg( &rtc6, time_zone, &utc_time, &alarm_time );
    log_info( &logger, " ----- Init successfully ----- " );
}

Application Task

Reads GMT time and Local time. Checks if the alarm is activated. If the alarm is active, it disable alarm and adjusts the new one within 20 seconds. Logs this data on USBUART every 900ms.


void application_task ( void )
{
    //  Task implementation.

    rtc6_get_gmt_time( &rtc6, &utc_time );
    rtc6_get_local_time( &rtc6, &local_time );

    log_printf( &logger, "--- UTC time ---\r\nTime : %d %d %d\r\n", utc_time.hours, utc_time.minutes, utc_time.seconds );

    log_printf( &logger, "Date : %d %d %d\r\n", utc_time.monthday, utc_time.month, utc_time.year );

    log_printf( &logger, "--- Local time ---\r\nTime : %d %d %d\r\n", local_time.hours, local_time.minutes, local_time.seconds );

    log_printf( &logger, "Date : %d %d %d\r\n \r\n", local_time.monthday, local_time.month, local_time.year );

    if ( rtc6_is_active_alarm( &rtc6 ) != 0 )
    {
        log_printf( &logger, " ----- Active alarm ----- \r\n" );
        rtc6_disable_alarm( &rtc6, RTC6_ALARM_0 );
        rtc6_repeat_alarm( &rtc6, RTC6_ALARM_0, 20 );
    }

    Delay_ms ( 900 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Rtc6

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Gyro click

0

This example demonstrates reading from Gyro click sensor (L3GD20) angular rate and then converting data to angular displacement by integration. Data is send via UART to PC terminal application.

[Learn More]

Ambient 20 Click

0

Ambient 20 Click is a compact add-on board used to measure the amount of the present ambient light. This board features the BU27030NUC, a 16-bit digital-output ambient light sensor with an I2C interface from Rohm Semiconductor. The BU27030NUC has a flexible and wide operating range of up to 20klx with a maximum resolution of 0.0007lux/count, providing an excellent responsivity close to the human eyes' response. It also features inherent 50Hz/60Hz light noise rejection and excellent IR-cut characteristics for high robustness at high sensitivity.

[Learn More]

Pressure 2 click

5

Pressure 2 click carries MS5803, a high resolution MEMS pressure sensor with an operating range from 0 to 14 bars. The module comprises a high linear pressure sensor and an ultra low power 24 bit ADC. Pressure 2 click communicates with the target board MCU either through mikroBUS SPI (CS, SCK, SDO, SDI) or I2C lines (SCL, SDA).

[Learn More]