TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139847 times)
  2. FAT32 Library (72210 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47740 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29981 times)
  8. mikroSDK (28442 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

RTC 7 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: RTC

Downloaded: 223 times

Not followed.

License: MIT license  

RTC 7 Click is a real time clock module which has an extremely low power consumption, allowing it to be used with a single button cell battery or a super capacitor, for an extended period of time.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "RTC 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "RTC 7 Click" changes.

Do you want to report abuse regarding "RTC 7 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


RTC 7 Click

RTC 7 Click is a real time clock module which has an extremely low power consumption, allowing it to be used with a single button cell battery or a super capacitor, for an extended period of time.

rtc7_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the RTC7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for RTC7 Click driver.

Standard key functions :

  • rtc7_cfg_setup Config Object Initialization function.

    void rtc7_cfg_setup ( rtc7_cfg_t *cfg ); 
  • rtc7_init Initialization function.

    err_t rtc7_init ( rtc7_t *ctx, rtc7_cfg_t *cfg );
  • rtc7_default_cfg Click Default Configuration function.

    err_t rtc7_default_cfg ( rtc7_t *ctx );

Example key functions :

  • rtc7_check_interrupt This function returns the interrupt state, state of INTA pin.

    uint8_t rtc7_check_interrupt ( rtc7_t *ctx );
  • rtc7_read_reg This function writes one byte data to the register.

    err_t rtc7_read_reg ( rtc7_t *ctx, uint8_t reg, uint8_t *data_out, uint8_t len );
  • rtc7_get_local_time This function gets the local time data including the determined time zone in calculations.

    err_t rtc7_get_local_time ( rtc7_t *ctx, rtc7_time_t *local_time );

Examples Description

This app is used to accurately measure time with low power consumption.

The demo application is composed of two sections :

Application Init

Initializes device.


void application_init ( void )
{
    log_cfg_t log_cfg;
    rtc7_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    //  Click initialization.
    rtc7_cfg_setup( &cfg );
    RTC7_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    rtc7_init( &rtc7, &cfg );
    Delay_ms ( 300 );

    time_set.seconds = 40;
    time_set.minutes = 59;
    time_set.hours = 23;
    time_set.weekdays = 1;
    time_set.monthday = 31;
    time_set.month = 12;
    time_set.year = 22;

    err_t error_flag = rtc7_reset( &rtc7 );
    error_flag |= rtc7_init_time ( &rtc7, 0 );
    error_flag |= rtc7_set_gmt_time( &rtc7, &time_set );
    error_flag |= rtc7_set_osc( &rtc7, RTC7_ENABLE_OSC, RTC7_INPUT_FREQ_32768HZ, RTC7_OUTPUT_FREQ_32768HZ );
    error_flag |= rtc7_write_reg( &rtc7, RTC7_TIMER_INIT_REG, 15 );
    error_flag |= rtc7_set_timer( &rtc7, RTC7_TIMER_EN, RTC7_TIMER_FREQ_16HZ );
    Delay_ms ( 100 );
    if ( RTC7_ERROR == error_flag )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    log_info( &logger, " Application Task " );
}

Application Task

Waits for a second count-up interrupt and then reads and logs the current time and date on the USB UART.


void application_task ( void )
{
    // Wait for timer count-down interrupt which is set to 1Hz
    while ( rtc7_check_interrupt ( &rtc7 ) );

    // Clear interrupt status
    uint8_t int_status = 0;
    rtc7_read_reg( &rtc7, RTC7_INT_STATUS_REG, &int_status, 1 );

    // Read time
    if ( RTC7_OK == rtc7_get_local_time( &rtc7, &time_date ) )
    {
        // Display time
        rtc7_display_results( &rtc7 );
    }
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.RTC7

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

EEPROM 3 click

2

EEPROM 3 click carries Atmel’s AT24CM02 DIP-8 socket EEPROM chip with 256 KB of memory. The board communicates with the target MCU through the mikroBUS I2C interface (SCL, SDA pins) with speeds up to 1 MHz. The chip allows for an entire page of data to be written in a single cycle. The board is designed to use either a 3.3V or a 5V power supply.

[Learn More]

6DOF IMU 16 Click

0

6DOF IMU 16 Click is a compact add-on board with a 6-axis inertial measurement device. This board features the ICM-42605, a premium performance 6-axis MotionTracking™ IMU from TDK InvenSense. It combines a 3-axis gyroscope and a 3-axis accelerometer, supporting the lowest gyroscope and accelerometer sensor noise in this IMU class. It also has the highest stability against temperature, shock, SMT/bend-induced offset, and more.

[Learn More]

Oximeter 5 Click

0

Oximeter 5 Click is a compact add-on board suitable for measuring blood oxygen saturation. This board features the MAX30102, integrated pulse oximetry, and heart-rate monitor module from Analog Devices. The MAX30102 includes internal LEDs, photodetectors, optical elements, and low-noise electronics with ambient light rejection. It operates on a single 1.8V power supply acquired from both mikroBUS™ power rails for the internal LEDs, communicating through a standard I2C compatible interface. The MAX30102 can be shut down through software with zero standby current, allowing the power rails to remain powered at all times.

[Learn More]