TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141334 times)
  2. FAT32 Library (74179 times)
  3. Network Ethernet Library (58760 times)
  4. USB Device Library (48850 times)
  5. Network WiFi Library (44559 times)
  6. FT800 Library (44145 times)
  7. GSM click (30881 times)
  8. mikroSDK (29722 times)
  9. PID Library (27368 times)
  10. microSD click (27291 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DC MOTOR Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Brushed

Downloaded: 382 times

Not followed.

License: MIT license  

This application change the speed and direction of DC Motor

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DC MOTOR Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DC MOTOR Click" changes.

Do you want to report abuse regarding "DC MOTOR Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


DC MOTOR Click

< DC MOTOR Click is a DC motor driver board in mikroBUS form factor. It features the DRV8833RTYH-Bridge motor driver, 74HC4053 multiplexer and two screw terminals >

dcmotor_click.png

Click Product page


Click library

  • Author : Nikola Peric
  • Date : Feb 2022.
  • Type : PWM type

Software Support

We provide a library for the DcMotor Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for DcMotor Click driver.

Standard key functions :

  • Config Object Initialization function.

    void dcmotor_cfg_setup ( dcmotor_cfg_t *cfg );

  • Initialization function.

    DCMOTOR_RETVAL dcmotor_init ( dcmotor_t ctx, dcmotor_cfg_t cfg );

Example key functions :

  • Start PWM module.

    void dcmotor_pwm_start ( dcmotor_t *ctx );

  • Enable the motor function.

    void dcmotor_enable ( dcmotor_t *ctx );

  • Set sleep mode function.

    void dcmotor_sleep_mode ( dcmotor_t *ctx );

    Examples Description

This application change the speed and direction of DC Motor.

The demo application is composed of two sections :

Application Init

Initialization driver enable's - GPIO, PWM initialization, set PWM duty cycle and PWM frequency, enable the motor, start PWM and start write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    dcmotor_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    dcmotor_cfg_setup( &cfg );
    DCMOTOR_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    dcmotor_init( &dcmotor, &cfg );

    log_printf( &logger, " Initialization  PWM \r\n" );

    dcmotor_set_duty_cycle ( &dcmotor, 0.0 );
    dcmotor_pwm_start( &dcmotor );
    log_printf( &logger, "---------------------\r\n" );
}

Application Task

This is a example which demonstrates the use of DC Motor Click board. DC Motor Click communicates with register via PWM interface. It shows moving in the left direction from slow to fast speed and from fast to slow speed. Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( )
{    
    static int8_t duty_cnt = 1;
    static int8_t duty_inc = 1;
    float duty = duty_cnt / 10.0;

    if ( dcmotor_direction == 1 )
    {
        dcmotor_sleep_mode ( &dcmotor );
        dcmotor_right_direction_slow ( &dcmotor );
        log_printf( &logger, "> CLOCKWISE <\r\n" );
        dcmotor_enable ( &dcmotor );
    }
    else
    {
        dcmotor_sleep_mode ( &dcmotor );
        dcmotor_left_direction_slow ( &dcmotor );
        log_printf( &logger, "> COUNTER CLOCKWISE <\r\n" );
        dcmotor_enable ( &dcmotor );
    }

    dcmotor_set_duty_cycle ( &dcmotor, duty );

    Delay_ms ( 500 );

    if ( 10 == duty_cnt ) 
    {
        duty_inc = -1;

        if ( dcmotor_direction == 1 )
        {
            dcmotor_direction = 0;
        }
        else if ( dcmotor_direction == 0 )
        {
            dcmotor_direction = 1;
        }
    }
    else if ( 0 == duty_cnt ) 
    {
        duty_inc = 1;
    }
    duty_cnt += duty_inc;

}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DcMotor

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Comparator Click

0

Comparator Click represents board equipped with two independent precise voltage comparators.

[Learn More]

Air Quality 8 Click

0

Air quality 8 Click is a compact add-on board containing a best-in-class air-quality sensing solution. This board features the ZMOD4510, a fully calibrated digital sensor solution that detects air quality in various indoor and outdoor applications from Renesas. The ZMOD4510 comes with selective ozone measurement capabilities, offering visibility into the air quality in users' environments for a personalized experience. This Click board™ is an I2C configurable and characterized by outstanding long-term stability and lifetime. Many additional features such as low power consumption, wide NO2 and O3 detection range, and high sensitivity make this Click board™ an excellent choice for detecting unhealthy conditions in outdoor air, such as personal air-quality monitor, HVAC, and other various air quality-related applications.

[Learn More]

Ultrasonic 2 click

6

The Ultrasonic 2 click is an ultrasonic range detection Click board, capable of detecting both near-field and far-field objects. It is equipped with the PGA460, a highly-integrated system-on-chip (SoC), based on SONAR principle.

[Learn More]