TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139566 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57256 times)
  4. USB Device Library (47631 times)
  5. Network WiFi Library (43220 times)
  6. FT800 Library (42566 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26933 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

FLAME Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 224 times

Not followed.

License: MIT license  

Flame Click is a fire detection solution. It carries a PT334-6B silicon phototransistor that’s covered in black epoxy and therefore sensitive only to infrared light.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "FLAME Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "FLAME Click" changes.

Do you want to report abuse regarding "FLAME Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

FLAME Click

Flame Click is a fire detection solution. It carries a PT334-6B silicon phototransistor that’s covered in black epoxy and therefore sensitive only to infrared light.

flame_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the Flame Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Flame Click driver.

Standard key functions :

  • Config Object Initialization function.

    void flame_cfg_setup ( flame_cfg_t *cfg );

  • Initialization function.

    FLAME_RETVAL flame_init ( flame_t ctx, flame_cfg_t cfg );

Example key functions :

  • Check the flame status function.

    uint8_t flame_check_status ( flame_t *ctx );

  • Get interrupt status.

    uint8_t flame_get_interrupt ( flame_t *ctx );

Examples Description

This application detects fire.

The demo application is composed of two sections :

Application Init

Initialization driver enable's - GPIO and start write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    flame_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.

    flame_cfg_setup( &cfg );
    FLAME_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    flame_init( &flame, &cfg );
}

Application Task

This is a example which demonstrates the use of Flame Click board.


void application_task ( void )
{
    //  Task implementation.

    flame_state = flame_check_status ( &flame );

    if ( ( flame_state == 1 ) && ( flame_state_old == 0) )
    {
        log_printf( &logger, "  ~  FLAME   ~ \r\n " );

        flame_state_old = 1;
    }

    if ( ( flame_state == 0 ) && ( flame_state_old == 1 ) )
    {
        log_printf( &logger, "   NO FLAME  \r\n " );
        flame_state_old = 0;
    }
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Flame

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Pac1934 Click

0

PAC1934 Click carries the PAC1934 four channel DC power/energy monitor from Microchip. The Click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over an I2C interface.

[Learn More]

USB-C Sink 3 Click

0

USB C Sink 3 Click is a compact add-on board with a standalone autonomous USB power delivery controller. This board features the AP33771, a high-performance USB PD sink controller from Diodes Incorporated. It supports dead battery mode to allow a system to be powered from an external source directly, establishes a valid source-to-sink connection, and negotiates a USB power delivery (PD) contract with a PD-capable source device. It also supports a flexible PD3.0 and PPS for applications that require direct voltage and current requests, with fine-tuning capabilities.

[Learn More]

GNSS MAX 2 Click

0

GNSS MAX 2 Click is a compact add-on board designed for precise positioning in urban environments. This board features the MAX-F10S, a professional-grade L1/L5 dual-band GNSS receiver from u-blox. This receiver uses dual-band GNSS technology to provide meter-level accuracy, even in challenging urban areas, by mitigating multipath effects. It supports concurrent GPS, Galileo, and BeiDou constellation tracking, offering robust performance with integrated filters and a low-noise amplifier for protection against RF interference. GNSS MAX 2 Click is ideal for vehicle tracking, fleet management, and micromobility solutions, even with small antennas.

[Learn More]