TOP Contributors

  1. MIKROE (2782 codes)
  2. Alcides Ramos (379 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139622 times)
  2. FAT32 Library (72052 times)
  3. Network Ethernet Library (57279 times)
  4. USB Device Library (47639 times)
  5. Network WiFi Library (43237 times)
  6. FT800 Library (42572 times)
  7. GSM click (29934 times)
  8. mikroSDK (28321 times)
  9. PID Library (26947 times)
  10. microSD click (26313 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Flash 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: FLASH

Downloaded: 223 times

Not followed.

License: MIT license  

Flash 3 Click is a mikroBUS add-on board for adding more Flash Memory to your target board microcontroller. It carries an ISSI IS25LP128 IC with 128 Mbit capacity.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Flash 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Flash 3 Click" changes.

Do you want to report abuse regarding "Flash 3 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

Flash 3 Click

Flash 3 Click is a mikroBUS add-on board for adding more Flash Memory to your target board microcontroller. It carries an ISSI IS25LP128 IC with 128 Mbit capacity.

flash3_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Flash3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Flash3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void flash3_cfg_setup ( flash3_cfg_t *cfg );

  • Initialization function.

    FLASH3_RETVAL flash3_init ( flash3_t ctx, flash3_cfg_t cfg );

  • Generic transfer function.

    void flash3_generic_transfer ( flash3_t ctx, spi_master_transfer_data_t block );

Example key functions :

  • Pause function.

    void flash3_pause ( flash3_t *ctx );

  • Unpause function.

    void flash3_unpause ( flash3_t *ctx );

  • Unpause function.

    void flash3_unpause ( flash3_t *ctx );

Examples Description

This applicaion adding more flash memory.

The demo application is composed of two sections :

Application Init

Initalizes device, Flash 3 Click board and makes an initial log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    flash3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    flash3_cfg_setup( &cfg );
    FLASH3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    flash3_init( &flash3, &cfg );

    Delay_ms ( 100 );
    log_printf( &logger, "------------------- \r\n" );
    log_printf( &logger, "  Flash  3  Click  \r\n" );
    log_printf( &logger, "-------------------\r\n" );
    flash3_setting( &flash3 );
    Delay_ms ( 100 );
    log_printf( &logger, "   Initialized     \r\n" );
    log_printf( &logger, "------------------- \r\n" );
}

Application Task

This is an example that shows the capabilities of the Flash 3 Click by writing into memory array of a Flash 3 Click board and reading same data from memory array.


void application_task ( void )
{
    char val_in[ 8 ] = { 0x4D, 0x49, 0x4B, 0x52, 0x4F, 0x45, 0x00 };
    char val_out[ 8 ] = { 0 };

    log_printf( &logger, "\r\n ____________________ \r\n" );
    log_printf( &logger, "Begin demonstration! \r\n\r\n" );


    log_printf( &logger, "Writing : %s\r\n", val_in );
    flash3_write( &flash3, 0x000000, &val_in[ 0 ], 6 );
    Delay_ms ( 100 );
    log_printf( &logger, "------------------ \r\n" );

    log_printf( &logger, "Reading : %s\r\n", val_in );
    flash3_normal_read( &flash3, 0x000000, &val_in[ 0 ], 6 );
    Delay_ms ( 100 );
    log_printf( &logger, "------------------ \r\n" );

    log_printf( &logger, "Erasing... \r\n" );
    flash3_sector_erase( &flash3, 0x000000 );
    Delay_ms ( 300 );
    log_printf( &logger, "Erased!" );
    Delay_ms ( 100 );
    log_printf( &logger, "------------------ \r\n"  );

    log_printf( &logger, "Reading : %s\r\n", val_out );
    flash3_fast_read( &flash3, 0x000000, &val_out[ 0 ], 6 );
    Delay_ms ( 100 );
    log_printf( &logger, "------------------ \r\n" );

    log_printf( &logger, "Demonstration over!" );
    log_printf( &logger, "\r\n ___________________ \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Flash3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

I2C to CAN Click

0

I2C to CAN Click is a compact add-on board that contains I2C to CAN-physical transceiver, which extends a single-master I2C bus through harsh or noisy environments. This board features the LT3960, a robust high-speed transceiver that extends a single-master I2C bus up to 400kbps using the CAN-physical layer from Analog Devices. One LT3960 from SCL and SDA I2C lines creates equivalent differential buses (CAN) on two twisted pairs, while the second LT3960 recreates the I2C bus locally for any slave I2C devices on the other end of the twisted pairs. A built-in 3.3V LDO powers both the I2C and CAN lines from a single input supply from 4V to 60V. This Click board™ is suitable for industrial and automotive networking, remote sensor applications, and more.

[Learn More]

4G LTE 2 Voice Click

0

4G LTE 2 Click is a compact add-on board representing a secure-cloud multi-band solution offering universal connectivity and reliable performance. This board features the LARA-R6001, the world’s smallest LTE Cat 1 module with global coverage and a built-in MQTT client from u-blox, representing a data and voice solution. Equipped with familiar AT commands set over the UART interface, USB interface, and Network and Status indicators, the LARA-R6001 also has a comprehensive certification scheme and multi-band/multi-mode capabilities providing excellent flexibility alongside the support of voice/audio application.

[Learn More]

SolidSwitch 3 Click

0

SolidSwitch 3 Click is a compact add-on board that contains a load switching device. This board features the BD8LB600FS-C, an automotive eight-channel low-side switch from Rohm Semiconductor. Every switch is controlled via an SPI interface and includes an N-channel MOSFET that supports a maximum current of 1A. The BD8LB600FS-C also has built-in protection circuits, namely the overcurrent, the thermal shutdown, the open-load detection, and the voltage lock-out circuits. Moreover, this device also possesses a diagnostic output function during abnormal detection.

[Learn More]