TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (404 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141115 times)
  2. FAT32 Library (73906 times)
  3. Network Ethernet Library (58554 times)
  4. USB Device Library (48725 times)
  5. Network WiFi Library (44376 times)
  6. FT800 Library (43977 times)
  7. GSM click (30721 times)
  8. mikroSDK (29478 times)
  9. PID Library (27304 times)
  10. microSD click (27132 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Vibra sense Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 380 times

Not followed.

License: MIT license  

Vibra Sense Click is a low cost micro shock vibration sensor with a digital output which can be set as an Interrupt (mikroBUS INT pin) An onboard potentiometer lets you set the interrupt threshold.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Vibra sense Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Vibra sense Click" changes.

Do you want to report abuse regarding "Vibra sense Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Vibra sense Click

Vibra Sense Click is a low cost micro shock vibration sensor with a digital output which can be set as an Interrupt (mikroBUS INT pin) An onboard potentiometer lets you set the interrupt threshold.

vibrasense_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the VibraSense Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for VibraSense Click driver.

Standard key functions :

  • Config Object Initialization function.

    void vibrasense_cfg_setup ( vibrasense_cfg_t *cfg );

  • Initialization function.

    VIBRASENSE_RETVAL vibrasense_init ( vibrasense_t ctx, vibrasense_cfg_t cfg );

  • Click Default Configuration function.

    void vibrasense_default_cfg ( vibrasense_t *ctx );

Example key functions :

  • Check interrupt function.

    uint8_t vibrasense_check_interrupt ( vibrasense_t *ctx ) ;

  • Reset vibra sense function.

    void vibrasense_reset ( vibrasense_t *ctx );

Examples Description

This is a example which demonstrates the use of Vibra sense Click board.

The demo application is composed of two sections :

Application Init

Configuring clicks and log objects.


void application_init ( void )
{
    log_cfg_t log_cfg;
    vibrasense_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_printf(&logger, "- Application Init -\r\n");

    //  Click initialization.

    vibrasense_cfg_setup( &cfg );
    VIBRASENSE_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    vibrasense_init( &vibrasense, &cfg );
    Delay_ms ( 100 );

    log_printf(&logger, "--------------------\r\n");
    log_printf(&logger, "  Vibra sense Click \r\n");
    log_printf(&logger, "--------------------\r\n");

    vibrasense_set_mode( &vibrasense, VIBRASENSE_ENABLE );
    Delay_ms ( 100 );
}

Application Task

It detects vibrations and enables PWM and writes log according to them.


void application_task ( void )
{
    if ( vibrasense_check_interrupt( &vibrasense ) )
    {
        log_printf(&logger, "       TILT !!!     \r\n");
        log_printf(&logger, "--------------------\r\n");
        Delay_ms ( 100 );
    }
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.VibraSense

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

BattMon click

5

BATT-MON Click is a very versatile, high accuracy, multiple-chemistry battery gauge for applications single-cell batteries.

[Learn More]

NFC Tag 5 Click

0

NFC Tag 5 Click is a compact add-on board that contains a compact NFC tag IC. This board features the M24LR64E-R, a dynamic NFC/RFID tag IC with a dual interface 64-Kbit EEPROM from STMicroelectronics. It features an I2C interface alongside an RF contactless interface operating at 13.56MHz, organized as 8192×8 bits in the I2C mode and 2048×32 bits in the ISO 15693 and ISO 18000-3 mode 1 RF mode. The M24LR64E-R also features an energy harvesting analog output and a user-configurable digital output pin, used as an interrupt, toggling during either RF write in progress or RF busy mode.

[Learn More]

Smart DOF click

5

SmartDOF click features a highly advanced integrated system-in-package (SiP) solution with three different sensors on-chip: triaxial accelerometer, magnetometer, and triaxial gyroscope are all integrated on a same die, along with the powerful 32-bit ARM® Cortex®-M0+ MCU.

[Learn More]