TOP Contributors

  1. MIKROE (2751 codes)
  2. Alcides Ramos (372 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139050 times)
  2. FAT32 Library (71588 times)
  3. Network Ethernet Library (56988 times)
  4. USB Device Library (47326 times)
  5. Network WiFi Library (43005 times)
  6. FT800 Library (42295 times)
  7. GSM click (29754 times)
  8. mikroSDK (27873 times)
  9. PID Library (26858 times)
  10. microSD click (26129 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Voltmeter Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: Measurements

Downloaded: 233 times

Not followed.

License: MIT license  

Voltmeter Click is a mikroBUS™ add-on board for measuring voltage in an external electric circuit.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Voltmeter Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Voltmeter Click" changes.

Do you want to report abuse regarding "Voltmeter Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Voltmeter Click

Voltmeter Click is a mikroBUS™ add-on board for measuring voltage in an external electric circuit.

voltmeter_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Voltmeter Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Voltmeter Click driver.

Standard key functions :

  • voltmeter_cfg_setup Config Object Initialization function.

    void voltmeter_cfg_setup ( voltmeter_cfg_t *cfg ); 
  • voltmeter_init Initialization function.

    err_t voltmeter_init ( voltmeter_t *ctx, voltmeter_cfg_t *cfg );

Example key functions :

  • voltmeter_read_raw_data This function reads raw ADC value.

    int16_t voltmeter_read_raw_data ( voltmeter_t *ctx );
  • voltmeter_calculate_voltage This function converts the raw ADC value to proportional voltage level.

    float voltmeter_calculate_voltage ( voltmeter_t *ctx, int16_t raw_adc, uint8_t iso_gnd );

Example Description

This application reads the voltage measurement and displays the results on the USB UART.

The demo application is composed of two sections :

Application Init

Initialization the driver and logger.


void application_init ( void )
{
    log_cfg_t log_cfg;
    voltmeter_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    //  Click initialization.
    voltmeter_cfg_setup( &cfg );
    VOLTMETER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    voltmeter_init( &voltmeter, &cfg );
    Delay_ms ( 100 );

    log_info( &logger, " Application Task " );
}

Application Task

Reads the raw ADC measurement once per second and converts it to the proportional voltage level. All data are being displayed on the USB UART where you can track their changes.


void application_task ( void )
{
    int16_t adc_value = 0;
    float voltage = 0;

    adc_value = voltmeter_read_raw_data( &voltmeter );
    log_printf( &logger, " ADC Value: %d\r\n", adc_value );

    voltage = voltmeter_calculate_voltage( &voltmeter, adc_value, VOLTMETER_GND_ISO );
    log_printf( &logger, " Voltage  : %.3f V\r\n", voltage );
    log_printf( &logger, "------------------------\r\n");
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Voltmeter

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

MCP25625 click

8

MCP256 click is a mikroBUS add-on board carrying a Microchip CAN controller with an integrated transceiver with SPI interface. The IC meets the automotive requirement for high speed operation (up to 1 Mb/s). The board also has an RS232 port.

[Learn More]

Diff Press 3 Click

0

Diff Press 3 Click is a compact add-on board that can measure differential pressure. It features the 2513130810401, a WSEN-PDUS differential pressure sensor from Würth Elektronik. The sensor is MEMS based and uses a piezo-resistive sensing principle. It is a fully calibrated pressure sensor with 15-bit digital and 11-bit analog outputs. In addition to pressure measurement, the 2513130810401 WSEN-PDUS sensor also has an embedded temperature sensor.

[Learn More]

GPS Parser

8

For those wishing to have all the information possible from their GPS, there's a click for that. This library is a gps parser. What is does is separates the various sentences that come from the gps satellites into useful parts and pieces. Then gives the developer access the the underlying data with useful getter type functions.

[Learn More]