TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (403 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140959 times)
  2. FAT32 Library (73513 times)
  3. Network Ethernet Library (58321 times)
  4. USB Device Library (48508 times)
  5. Network WiFi Library (44132 times)
  6. FT800 Library (43687 times)
  7. GSM click (30546 times)
  8. mikroSDK (29290 times)
  9. PID Library (27220 times)
  10. microSD click (26931 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Gyro 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 312 times

Not followed.

License: MIT license  

Gyro 4 Click is a two-axis MEMS gyroscope for optical image stabilization applications.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Gyro 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Gyro 4 Click" changes.

Do you want to report abuse regarding "Gyro 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Gyro 4 Click

Gyro 4 Click is a two-axis MEMS gyroscope for optical image stabilization applications.

gyro4_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Gyro4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Gyro4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void gyro4_cfg_setup ( gyro4_cfg_t *cfg );

  • Initialization function.

    GYRO4_RETVAL gyro4_init ( gyro4_t ctx, gyro4_cfg_t cfg );

  • Click Default Configuration function.

    void gyro4_default_cfg ( gyro4_t *ctx );

Example key functions :

  • Getting register content

    uint8_t gyro4_spi_get ( gyro4_t ctx, uint8_t register_address, uint8_t register_buffer, uint16_t n_registers );

  • Getting die temperature value

    uint8_t gyro4_get_temperature ( gyro4_t ctx, float temperature );

  • Getting axes values

    uint8_t gyro4_get_axes( gyro4_t ctx, float x_axis, float * y_axis );

Examples Description

This application is a two-axis MEMS gyroscope for optical image stabilization.

The demo application is composed of two sections :

Application Init

Initializes SPI device


void application_init ( void )
{
    log_cfg_t log_cfg;
    gyro4_cfg_t cfg;
    uint8_t initialize_flag;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    gyro4_cfg_setup( &cfg );
    GYRO4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    gyro4_init( &gyro4, &cfg );

    Delay_ms ( 500 );
    initialize_flag = gyro4_initialize( &gyro4 );
    if ( initialize_flag == 1 )
    {
        log_printf( &logger, "> App init fail \r\n" );
    }
    else if ( initialize_flag == 0 )
    {
        log_printf( &logger, "> App init done \r\n" );
    }
}

Application Task

Checks for data ready interrupt, gets axes and temperature data and logs those values


void application_task ( )
{
    uint8_t int_flag;
    float x_axis;
    float y_axis;
    float die_temperature;
    char degrees_celsius[ 4 ] = { ' ', 176, 'C', 0x00 };
    char degrees_per_second[ 5 ] = { ' ', 176, '/', 's', 0x00 };

    int_flag = gyro4_int_get( &gyro4 );
    while ( int_flag == 1 )
    {
        int_flag = gyro4_int_get( &gyro4 );
    }

    gyro4_get_temperature( &gyro4, &die_temperature );
    gyro4_get_axes( &gyro4, &x_axis, &y_axis );

    log_printf( &logger, "\r\n" );
    log_printf( &logger, "> Die temperature : %.2f %c \r\n", die_temperature, degrees_celsius );
    log_printf( &logger, "> X axis : %.2f %c \r\n", x_axis, degrees_per_second );
    log_printf( &logger, "> Y axis : %.2f %c \r\n", y_axis, degrees_per_second );

    Delay_ms ( 500 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Gyro4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

NO2 2 Click

0

NO2 2 Click is a gas sensor Click board™, equipped with the MiCS-2714, a compact metal oxide (MOS) sensor. This sensor reacts to the presence of nitrogen dioxide (NO2) and hydrogen (H2).

[Learn More]

LTE IoT 5 Click

0

LTE IoT 5 Click is an add-on board with a compact and cost-effective secure-cloud multi-band solution designed for IoT applications. This board features the SARA-R510M8S, a cellular module that supports LTE Cat M1/Cat NB2 bands with integrated high-performance standard precision M8 GNSS receiver for global position acquisition from u-Blox. Equipped with familiar AT commands set over the UART interface, USB interface, and Network and Status indicators this low power size-optimized solution, specifically designed for IoT, also provides over-the-air firmware updates, end-to-end trusted domain security, and u-Blox’s leading GNSS technology.

[Learn More]

Buck 10 Click

0

Buck 10 Click is a high-efficiency step-down converter which provides a highly regulated output voltage derived from the connected power source, rated from 4V to 18V. The regulated output voltage can be selected between two values: 3.3V and 5V. These are voltage values ​​that are most commonly used in many embedded designs. This Click is based around an integrated DC-DC converter, labeled as MPM3632C.

[Learn More]