TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141277 times)
  2. FAT32 Library (74089 times)
  3. Network Ethernet Library (58715 times)
  4. USB Device Library (48826 times)
  5. Network WiFi Library (44525 times)
  6. FT800 Library (44073 times)
  7. GSM click (30804 times)
  8. mikroSDK (29656 times)
  9. PID Library (27355 times)
  10. microSD click (27251 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

HDC1000 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Temperature & humidity

Downloaded: 406 times

Not followed.

License: MIT license  

HDC1000 Click is a humidity and temperature measurement Click board carrying the HDC1000 sensor.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "HDC1000 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "HDC1000 Click" changes.

Do you want to report abuse regarding "HDC1000 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


HDC1000 Click

HDC1000 Click is a humidity and temperature measurement Click board carrying the HDC1000 sensor.

hdc1000_click.png

Click Product page


Click library

  • Author : Mihajlo Djordevic
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the HDC1000 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for HDC1000 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void hdc1000_cfg_setup ( hdc1000_cfg_t *cfg );

  • Initialization function.

    HDC1000_RETVAL hdc1000_init ( hdc1000_t ctx, hdc1000_cfg_t cfg );

  • Click Default Configuration function.

    void hdc1000_default_cfg ( hdc1000_t *ctx );

Example key functions :

  • This function executes default configuration for HDC1000 Click.

    hdc1000_default_cfg( &hdc1000 );

  • This function gets temperature data from the HDC1000 sensor.

    hdc1000_get_temperature_data( &hdc1000 );

  • This function gets humidity data from the HDC1000 sensor.

    hdc1000_get_humidity_data( &hdc1000 );

Examples Description

Demo application code is used for measuring temperature and humidity.

The demo application is composed of two sections :

Application Init

AppInit is used for Logger and Click initialization.


void application_init ( void )
{
    log_cfg_t log_cfg;
    hdc1000_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_printf( &logger, "---- Application Init ---- \r\n\n" );

    //  Click initialization.

    hdc1000_cfg_setup( &cfg );
    HDC1000_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    hdc1000_init( &hdc1000, &cfg );

    hdc1000_default_cfg( &hdc1000 );
    log_printf( &logger, "---- Start measurement ---- \r\n\n" );
    Delay_ms ( 1000 );

}

Application Task

This is an example which demonstrates the usage of HDC1000 Click board. HDC1000 measure temperature and humidity, and calculate dewpoint value from the HDC1000 sensor.


void application_task ( void )
{
    temperature = hdc1000_get_temperature_data( &hdc1000 );
    log_printf( &logger, " Temperature : %f C \r\n", temperature );

    humidity = hdc1000_get_humidity_data( &hdc1000 );
    log_printf( &logger, " Humidity : %f % \r\n", humidity );

    log_printf( &logger, "----------------------------------- \r\n" );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HDC1000

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LTE IoT 12 Click

0

LTE IoT 12 Click is a compact add-on board designed for low-power LTE Cat M1, NB-IoT, and EGPRS communication in IoT applications. This board features the BG95-M3 multi-mode data-only from Quectel, which also integrates GNSS (GPS, GLONASS, BDS, Galileo, QZSS) for precise location tracking. The board supports a wide range of LTE and 2G bands, offers ultra-low power consumption, and features advanced security via an ARM Cortex A7 processor with TrustZone technology. It includes UART and USB interfaces for easy communication, GNSS data output, and firmware upgrades.

[Learn More]

RS485 4 click

5

RS485 4 Click offers an UART to RS485 signal conversion, featuring the ADM2795E specialized IC with the complete galvanic isolation.

[Learn More]

Buck 2 click

0

Buck 2 click is a powerful step down DC-DC switching regulator. It gives a high precision regulated voltage at its output and it can handle an ample amount of current.

[Learn More]