TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139568 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57256 times)
  4. USB Device Library (47631 times)
  5. Network WiFi Library (43222 times)
  6. FT800 Library (42566 times)
  7. GSM click (29932 times)
  8. mikroSDK (28292 times)
  9. PID Library (26934 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Light Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 227 times

Not followed.

License: MIT license  

This application return the ambient light intensity

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Light Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Light Click" changes.

Do you want to report abuse regarding "Light Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Light Click

Light Click is the add-on board with PD15-22CTR8 PIN photodiode, providing an effective and easy way to measure ambient light intensity.

light_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Feb 2020.
  • Type : SPI type

Software Support

We provide a library for the Light Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Light Click driver.

Standard key functions :

  • Config Object Initialization function.

    void light_cfg_setup ( light_cfg_t *cfg );

  • Initialization function.

    LIGHT_RETVAL light_init ( light_t ctx, light_cfg_t cfg );

Example key functions :

  • Generic write data function.

    void light_write_data ( light_t *ctx, uint8_t address, uint8_t write_command );

  • Generic read data function.

    uint16_t light_read_data ( light_t *ctx );

  • Function calculate percent.

    uint8_t light_calculate_percent ( light_t *ctx, uint16_t light_value );

Examples Description

This application return the ambient light intensity.

The demo application is composed of two sections :

Application Init

Initialization driver enable's - SPI and start write log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    light_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    light_cfg_setup( &cfg );
    LIGHT_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    light_init( &light, &cfg );
}

Application Task

This is a example which demonstrates the use of Light Click board. Measured light intensity and calculate light intensity percent from sensor, results are being sent to the Usart Terminal where you can track their changes. All data logs on usb uart for aproximetly every 100 ms when the data value changes.


void application_task ( void )
{
    uint16_t light_value;
    uint8_t light_percent;
    uint8_t percent_old = 1;

    light_value = light_read_data( &light );
    light_percent = light_calculate_percent( &light, light_value );


    if ( percent_old != light_percent )
    {
        log_printf( &logger, " Light Intensity : %d \r\n", light_percent );

        log_printf( &logger, " Light Value     : %d\r\n", light_value );

        percent_old = light_percent;
        Delay_100ms();
    }
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Light

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

RTC Demo

0

The application demonstrates RTC SDK functionality.

[Learn More]

SRAM 3 Click

0

SRAM 3 Click is a compact add-on board that contains a serial non-volatile SRAM with a high storage capacity. This board features the ANV32AA1WDK66, a 1Mb serial SRAM with a non-volatile SONOS storage element included with each memory cell organized as 128k words of 8 bits each from Anvo-System Dresden. The serial SRAM provides fast access & cycle times, high data accuracy, ease of use, and unlimited read & write accessed by a high-speed SPI compatible bus. This Click board™ is suitable to store drive profiles, configurations, and similar data, or for applications such as medical devices, industrial automation (for example, motor control and robotics), smart metering systems, and many others.

[Learn More]

I2C 1-Wire Click

0

I2C 1-Wire Click carries DS2482-800, a bridge device that performs bidirectional conversions between I2C masters and 1-Wire slave devices. These can be EEPROM chips, temperature sensors and similar devices that have momentary high source current modes.

[Learn More]