TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (403 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140969 times)
  2. FAT32 Library (73515 times)
  3. Network Ethernet Library (58321 times)
  4. USB Device Library (48509 times)
  5. Network WiFi Library (44134 times)
  6. FT800 Library (43687 times)
  7. GSM click (30547 times)
  8. mikroSDK (29291 times)
  9. PID Library (27220 times)
  10. microSD click (26931 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LSM6DSL Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 357 times

Not followed.

License: MIT license  

LSM6DSL Click measures linear and angular velocity with six degrees of freedom. It carries the LSM6DSL high-performance 3-axis digital accelerometer and 3-axis digital gyroscope.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LSM6DSL Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LSM6DSL Click" changes.

Do you want to report abuse regarding "LSM6DSL Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


LSM6DSL Click

LSM6DSL Click measures linear and angular velocity with six degrees of freedom. It carries the LSM6DSL high-performance 3-axis digital accelerometer and 3-axis digital gyroscope.

lsm6dsl_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : SPI type

Software Support

We provide a library for the Lsm6Dsl Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Lsm6Dsl Click driver.

Standard key functions :

  • Config Object Initialization function.

    void lsm6dsl_cfg_setup ( lsm6dsl_cfg_t *cfg );

  • Initialization function.

    LSM6DSL_RETVAL lsm6dsl_init ( lsm6dsl_t ctx, lsm6dsl_cfg_t cfg );

  • Click Default Configuration function.

    void lsm6dsl_default_cfg ( lsm6dsl_t *ctx );

Example key functions :

  • This function set accel configuration to the target LSM6DSL_CTRL1_XL register of LSM6DSL sensor.

    void lsm6dsl_set_accel_config ( lsm6dsl_t *ctx, uint8_t odr_sel, uint8_t full_scale );

  • This function set gyro configuration to the target LSM6DSL_CTRL1_XL register of LSM6DSL sensor.

    void lsm6dsl_set_gyro_config ( lsm6dsl_t *ctx, uint8_t odr_sel, uint8_t full_scale );

  • This function get axis value from the two target 8-bit register address of LSM6DSL sensor.

    uint16_t lsm6dsl_get_axis ( lsm6dsl_t *ctx, uint8_t reg_address_low );

Examples Description

This app measures linear and angular velocity with six degrees of freedom.

The demo application is composed of two sections :

Application Init

Initialization driver.


void application_init ( void )
{
    log_cfg_t log_cfg;
    lsm6dsl_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----\r\n" );

    //  Click initialization.

    lsm6dsl_cfg_setup( &cfg );
    LSM6DSL_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    lsm6dsl_init( &lsm6dsl, &cfg );

    lsm6dsl_default_cfg( &lsm6dsl );

    log_printf( &logger, "---------------------------------------\r\n" );
    log_printf( &logger, "|            LSM6DSL Click            |\r\n" );
    log_printf( &logger, "---------------------------------------\r\n" );
    log_printf( &logger, "|     Accel       |       Gyro        |\r\n" );
    log_printf( &logger, "---------------------------------------\r\n" );

    Delay_ms ( 100 );
}

Application Task

This is a example which demonstrates the use of LSM6DSL Click board. LSM6DSL Click communicates with register via SPI by write to register and read from register, measured acceleration and gyroscope coordinates values ( X,Y,Z ) Result are being sent to the uart where you can track their changes. All data logs on usb uart for aproximetly every 3 sec.


void application_task ( void )
{

    lsm6dsl_get_accel( &lsm6dsl, &accel, LSM6DSL_FULLSCALE_XL_2 );

    Delay_ms ( 10 );

    lsm6dsl_get_gyro( &lsm6dsl, &gyro, LSM6DSL_FULLSCALE_G_245 );

    Delay_ms ( 10 );

    log_printf( &logger, " Accel X : %f |  Gyro X : %f |\r\n", accel.accel_x, gyro.gyro_x );

    log_printf( &logger, " Accel Y : %f |  Gyro Y : %f |\r\n", accel.accel_y, gyro.gyro_y );

    log_printf( &logger, " Accel Z : %f |  Gyro Z : %f |\r\n", accel.accel_z, gyro.gyro_z );

    log_printf( &logger, "---------------------------------------\r\n" );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Lsm6Dsl

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Pot 3 Click

0

POT 3 Click is a Click board� with the accurate selectable reference voltage output. By employing a high-quality 11mm, metal shaft potentiometer, this Click board� can provide very accurate voltage output.

[Learn More]

ROTARY Y Click

0

Rotary Click carries a 15-pulse incremental rotary encoder with detents, surrounded by a ring of 16 yellow LEDs. It’s a perfect solution for adding a precision input knob to your design. The encoder outputs A and B signals (out of phase to each other); the knob also acts as a push-button which sends an interrupt to the target board MCU. The LED ring is controlled through SPI lines (CS, SCK, MISO, MOSI). Rotary Click can be used with either a 3.3V or 5V power supply.

[Learn More]

MPU IMU click

0

Simple demonstration of using MPU 6000 6-axis motion device Example reads the 3-axis gyroscope, a 3-axis accelerometer and temperature sensor data and writes them to UART.

[Learn More]