TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139566 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57255 times)
  4. USB Device Library (47615 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42566 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26933 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

MAGNETO Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Magnetic

Downloaded: 254 times

Not followed.

License: MIT license  

MAGNETO Click carries contactless magnetic angle position sensor which delivers precise angle measurements down to 0.05º in 14-bit resolution.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "MAGNETO Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "MAGNETO Click" changes.

Do you want to report abuse regarding "MAGNETO Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


MAGNETO Click

MAGNETO Click carries contactless magnetic angle position sensor which delivers precise angle measurements down to 0.05º in 14-bit resolution.

magneto_click.png

Click Product page


Click library

  • Author : Mihajlo Djordjevic
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Magneto Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Magneto Click driver.

Standard key functions :

  • Config Object Initialization function.

    void magneto_cfg_setup ( magneto_cfg_t *cfg );

  • Initialization function.

    MAGNETO_RETVAL magneto_init ( magneto_t ctx, magneto_cfg_t cfg );

  • Click Default Configuration function.

    void magneto_default_cfg ( magneto_t *ctx );

Example key functions :

  • This function read and returns the value of the state register.

    uint16_t magneto_get_state ( magneto_t *ctx );

  • This function read the 16-bit data from register then calculate and convert to float angle value from 0deg to 360deg.

    float magneto_calculate_angle ( magneto_t *ctx );

Examples Description

Example presents precise angle measurements down to 0.05º in 14-bit resolution.

The demo application is composed of two sections :

Application Init

Application Init performs Logger and Click initialization.


void application_init ( void )
{
    log_cfg_t log_cfg;
    magneto_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_printf( &logger, "--------------------------\r\n" );
    log_printf( &logger, "     Application  Init\r\n" );
    Delay_ms ( 100 );

    //  Click initialization.

    magneto_cfg_setup( &cfg );
    MAGNETO_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    magneto_init( &magneto, &cfg );

    log_printf( &logger, "--------------------------\r\n" );
    log_printf( &logger, " ----- MAGNETO Click ---- \r\n" );
    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );

    if ( magneto_get_state( &magneto ) != 1 )
    {
        log_printf( &logger, " -- Initialization done --\r\n" );
    }
    else
    {
        log_printf( &logger, " -------- ERROR ! --------\r\n" );
    }

    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
}

Application Task

Magneto Click communicates with register via SPI by write and read from register and calculate float angle value. Results are being sent to the UART Terminal where you can track their changes. All data logs on USB UART for aproximetly every 2 sec.


void application_task ( void )
{
    angle_value = magneto_calculate_angle( &magneto );
    log_printf( &logger, "  [ANGLE] : %0.3f \r\n", angle_value );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Magneto

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Silent Step 4 Click

0

Silent Step 4 Click is a compact add-on board representing a completely integrated step motor driver solution. This board features the TMC2240, a smart integrated stepper driver from Analog Devices. The driver is based on a 256 micro-steps built-in indexer, two fully integrated H-Bridges, and non-dissipative integrated current sensing (ICS). The two H-Bridges can drive motors of up to 36V and 3A at max.

[Learn More]

Button Power Click

0

Button Power Click is a very interesting interactive gadget on a Click board™. It is an integrated capacitive touch sensor display in the form of a button. By utilizing an advanced capacitive touch sensing technology, the CTHS15CIC05ONOFF sensor can successfully replace the traditional mechanical button, allowing very simplified yet reliable user interfaces to be developed. Besides the touch detection, this sensor also features a green power symbol icon with backlight, which makes the Click board™ very useful for building various stylized and visually appealing interfaces.

[Learn More]

H-Bridge Driver 2 Click

0

H-Bridge Driver 2 Click is a compact add-on board that contains an H-bridge gate driver, also known as a full-bridge pre-driver. This board features the NCV7535, a monolithic H−bridge pre-driver for a DC motor with an enhanced feature set, useful in automotive systems from ON Semiconductor. The gate driver channels are independently controlled by a 24-bit SPI interface, allowing this Click board™ to be optionally configured in a single or dual H-bridge mode. It has a wide operating voltage range from 6V to 18V with built-in protection features against short-circuit, under/over voltage, overcurrent, and overtemperature conditions. This Click board™ is suitable to drive external MOSFETs, thus providing control of a DC-motor.

[Learn More]